Determining the Effect of Spironolactone on Electrolyte Supplementation in Preterm Infants With Chronic Lung Disease

November 28, 2016 updated by: Courtney Brown Sweet, West Virginia University Healthcare
Bronchopulmonary dysplasia (BPD), also known as chronic lung disease (CLD), is a major complication of premature birth and is associated with a significant increased risk of complications including death. Diuretics have been used for decades in babies with BPD and are considered a standard of care. Patients receive electrolyte supplementation to replace the electrolytes removed by the diuretics. Spironolactone is not as good as other diuretics at removing extra fluid, but it is different from chlorothiazide and furosemide because instead of removing potassium, it actually can increase potassium levels in our body. Spironolactone is used with chlorothiazide to try to minimize the potassium lost; therefore, reduce the electrolyte supplementation needed. However, studies have suggested that preterm babies aren´t developed enough to appropriately respond to spironolactone. Also, one study has shown that adding spironolactone to chlorothiazide in patients with BPD has no effect on whether or not patients receive electrolyte supplementation. This study will examine whether there is a difference in the amount of electrolyte supplementation between patients receiving chlorothiazide only or chlorothiazide plus spironolactone. the investigators hypothesize there will be no difference in the amount of electrolyte supplementation between the two groups.

Study Overview

Detailed Description

Bronchopulmonary dysplasia (BPD), also known as chronic lung disease (CLD), is a major complication of premature birth and is associated with significant morbidity and mortality. Bronchopulmonary dysplasia most commonly affects preterm infants who have required prolonged aggressive mechanical ventilation and/or oxygen supplementation. Risk factors associated with BPD include degree of prematurity, infection, mechanical ventilation, oxygen concentration, and nutritional status. Despite significant advances in the care of preterm infants and improved survival, the incidence of BPD has been fairly static over the past decade.

Diuretics and fluid restriction are considered a mainstay of therapy in the management of BPD to combat interstitial alveolar edema. Short courses of furosemide followed by long-term therapy using a thiazide diuretic with concurrent spironolactone have shown improvement in pulmonary function and better outcomes. Double-blinded, randomized, placebo-controlled trials have shown improvement in pulmonary compliance, airway resistance, infants alive at discharge, and a decrease in fraction of inspired oxygen and need for furosemide boluses.

Spironolactone is a competitive aldosterone receptor antagonist that acts on the distal convoluted tubule and collecting duct to facilitate sodium excretion while conserving potassium and hydrogen ions. Since only a minimal amount of sodium filtered by the glomerulus reaches the distal tubule, spironolactone is considered a weak diuretic. Spironolactone is primarily used with chlorothiazide for its potassium-sparing effect to reduce the need for electrolyte supplementation. There has only been one prospective, randomized, double-blind, placebo-controlled study comparing chlorothiazide with or without the addition of spironolactone in premature infants with chronic lung disease. This study demonstrated no difference between the groups in the need for electrolyte supplementation, electrolyte balance, or pulmonary function. In addition, preterm infants' distal tubules may respond inadequately to aldosterone; thereby, limiting the role of spironolactone in this patient population.

In the neonatal population, spironolactone is primarily used in addition with chlorothiazide for its potassium-sparing effects to reduce the need for electrolyte supplementation. However, evidence and current practice suggests the majority of patients still receive electrolyte supplementation. One study evaluated spironolactone's effect on the need for electrolyte supplementation, but there is no published data with a primary outcome evaluating spironolactone's effect on the quantity of electrolyte supplementation. We hypothesize there will be no difference in the amount of electrolyte supplementation between the two groups.

Study Type

Interventional

Enrollment (Anticipated)

40

Phase

  • Phase 2
  • Phase 3

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Study Locations

    • West Virginia
      • Morgantown, West Virginia, United States, 26505
        • Recruiting
        • West Virginia University Healthcare

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

  • Child
  • Adult
  • Older Adult

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • The attending makes the decision to start enteral chlorothiazide for long-term diuretic therapy.
  • Gestational age < 32 weeks at time of delivery
  • If patient is currently receiving furosemide and electrolyte supplements, these must be discontinued prior to enrollment.

Exclusion Criteria:

  • Renal anomaly
  • Receiving maintenance IV fluids for more than the previous 48 hours
  • Any contraindication to receiving enteral medication
  • Serum Na < 132 mEq/L
  • Serum K < 3.0 mEq/L
  • Serum Cl < 92 mEq/L
  • Presence of ostomy of any sort

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Double

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: Spironolactone
Oral spironolactone suspension dosed at 3 mg/kg/day will be administered once-daily to the patients assigned to the treatment arm.
Patients will continue to receive standard of care as if they were not enrolled in the study. All patients will receive oral chlorothiazide 40 mg/kg/day divided twice-daily, electrolyte supplementation as needed based on a standard algorithm, and if needed, rescue enteral furosemide 2 mg/kg/day. The intervention will be enteral spironolactone 3 mg/kg once daily
Other Names:
  • Aldactone
Placebo Comparator: Placebo suspension
An oral placebo suspension dosed at 3 mg/kg/day administered once-daily will be given to patients in the placebo arm.
Patients will continue to receive standard of care as if they were not enrolled in the study. All patients will receive oral chlorothiazide 40 mg/kg/day divided twice-daily, electrolyte supplementation as needed based on a standard algorithm, and if needed, rescue enteral furosemide 2 mg/kg/day.
Other Names:
  • an equivalent placebo

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Dose of potassium chloride in milliequivalents/kg/day
Time Frame: Day 28
The primary objective of this study is to assess the effect of spironolactone on the quantity of electrolyte supplementation in preterm infants receiving a standard regimen for chronic lung disease. The primary endpoint compared between groups will be the dose of potassium chloride in milliequivalents/kg/day from baseline to day 28.
Day 28

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Requirement of electrolyte supplementation
Time Frame: Day 28
Treatment and control groups will be compared to assess if there is a difference between the need for electrolyte supplementation.
Day 28
Analyze the use of furosemide rescue doses
Time Frame: Day 28
The groups will be compared to assess the difference in the need for rescue furosemide doses (enteral furosemide at 2 mg/kg once daily).
Day 28
Number of furosemide doses utilized
Time Frame: Day 28
The total number of rescue furosemide doses utilized will be compared between groups.
Day 28
Escalation in respiratory support
Time Frame: Day 28
Groups will be compared to determine if there is a difference in the need for an escalation in respiratory support throughout the study period. Escalation in respiratory support is defined as an increase in mean airway pressure for patients on the ventilator, 20% or greater increase in the fraction of inspired oxygen, or an escalation in the mode of support.
Day 28

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Courtney B Sweet, PharmD, WVU Healthcare

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

October 1, 2012

Primary Completion (Anticipated)

December 1, 2016

Study Completion (Anticipated)

December 1, 2016

Study Registration Dates

First Submitted

November 1, 2012

First Submitted That Met QC Criteria

November 5, 2012

First Posted (Estimate)

November 6, 2012

Study Record Updates

Last Update Posted (Estimate)

November 30, 2016

Last Update Submitted That Met QC Criteria

November 28, 2016

Last Verified

November 1, 2016

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Chronic Lung Disease

Clinical Trials on Spironolactone

3
Subscribe