Mechanism Study of tDCS on Human Electrophysiological Network Via SEEG

Transcranial direct current stimulation(tDCS) is a non-invasive Neuromodulation method.The weak direct current produced by tDCS can be transmitted through the skull and induce biphase, polarization-related changes in the cortex. Related clinical studies have found that tDCS has a corresponding therapeutic effect on neurological and psychiatric diseases such as stroke rehabilitation, depression, pain, epilepsy, etc.

Stereotactic electroencephalography(sEEG) implants a set of deep electrodes into the brain that use stereotactic localization to detect electrical activity, locate epileptic foci and functional areas, and detect changes in electrical fields caused by tDCS in the deep brain. This direct measurement technology will provide validation and optimization for the electric field simulation method based on finite element analysis (FEM), also complement the latest indirect current density intensity measurement technology based on MRI phase measurement, providing support for the targeting and personalized treatment of tDCS technology.

In order to achieve this goal and study the mechanism and function of tDCS better , this project aims to realize the clinical use of sEEG to measure the electric field information generated by tDCS in the human brain in vivo.

Study Overview

Status

Unknown

Conditions

Detailed Description

The core research objective of this project is to measure the distribution of electric field generated by tDCS in the human brain in vivo using clinical sEEG technology, and to study the influence of different tDCS stimulation parameters on the distribution of intracranial electric field intensity, so as to provide scientific basis for evaluating the effectiveness of tDCS, optimizing the stimulation parameters of tDCS, and realizing the individuation of tDCS. The project involves many scientific issues and key technologies such as "stimulus recording platform construction -- clinical trial design -- comparative research method". The main research contents are as follows.

  1. Transcranial electrical stimulation and intracranial space electric field measurement system based on sEEG and tDCS.

    Multi-channel transcranial direct current stimulation technology is studied to realize the integration of parameters setting, constant current output, overcurrent protection, electrode connection status detection and other modules. Based on sEEG intracranial electric field measurement system, weak electric field measurement with spatial positioning information can be realized accurately. The integrated control system of transcranial electric stimulation and intracranial space electric field recording was studied to realize the linkage control of multi-channel tDCS and space electric field recording and data processing and analysis.

  2. Clinical implementation protocol design of tDCS combined with sEEG.

    To study the implementation protocol of tDCS combined sEEG applicable to clinical practice, and to develop inclusion and exclusion criteria for clinical volunteers, based on MRI data and actual disease conditions of volunteers, individual differentiation planning of sEEG implantation and stimulation parameters and stimulation sites of combined tDCS; Intraoperative sEEG-based intracranial spatial electric field measurement protocols were studied, including implementation procedures for tDCS stimulation and sEEG recording, individualized experimental paradigm design, practical procedures and data recording.

  3. Individual head model electric field simulation analysis method.

An electric field distribution simulation model based on individual head model was established to realize the finite element simulation calculation of spatial electric field distribution under different individual head model structure, different electrical properties of tissues, different tDCS stimulation combinations and stimulation parameters. According to the electric field data recorded by sEEG and MRI data, the actual electric field distribution model of individual head model was established. The spatial electric field distribution characteristics of tDCS acting on different intracranial depths and distances were analyzed under different external stimulation parameters, and compared with the simulation model. The existing simulation model is optimized based on the measured data.

Study Type

Interventional

Enrollment (Anticipated)

4

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

    • Zhejiang
      • Hangzhou, Zhejiang, China, 310009
        • Recruiting
        • SAHZhejiangU
        • Contact:
          • Hongjie Jiang, Dr.

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 70 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • SEEG is required for preoperative evaluation in patients with focal refractory epilepsy, consent and sign the informed consent for treatment.

Exclusion Criteria:

  • (1) history of major depression or mental disorder and medication history causing symptoms of mental disorder,
  • (2) patients with severe cognitive impairment (MMSE score<17),
  • (3) craniocerebral surgery history,
  • (4) severe head skin disease (including but not limited to purpura, blisters, rash, eczema) or open head injury/laceration,
  • (5) existing known risk factors of tDCS: A. use of implanted electronic devices (such as pacemakers) or metal implants (such as stents), B. a history of injury to unfixed metal in any part of the body (including metal objects in the eye), C. pregnant woman;D. cancer patients, patients in critical condition or patients with important organ failure, E. severe allergy to the electrode patch, local skin injury or inflammation, and hyperalgesia in the stimulation area, F. scalp injury that may cause poor application of tDCS.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Basic Science
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: tDCS group
The anode of tDCS is placed on the occipital lobe and the cathode on the frontal lobe, or the anode of tDCS is placed on the left temporal lobe and the cathode on the right temporal lobe.
Depending on the location of sEEG electrode implanted in the patient's head, the tDCS electrode (5 cm×7 cm each) was placed on occipital-frontal lobe or bilateral temporal lobe. Current intensity: 2 mA and 4 mA, Stimulus time: 3 min (each stimulus session).

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Voltage difference
Time Frame: intraoperative
Voltage difference between stimulation electrodes.
intraoperative
Stimulus current
Time Frame: intraoperative
Stimulus current between stimulation electrodes.
intraoperative
sEEG voltage
Time Frame: intraoperative
Respectively, 2 to 4 sEEG electrodes with distance of more than 2 cm were selected along the sagittal plane direction and coronal plane direction, and the voltage of each channel on the electrode was recorded.
intraoperative

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Chair: Hongjie Jiang, Dr., Second Affiliated Hospital, School of Medicine, Zhejiang University

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Anticipated)

November 1, 2020

Primary Completion (Anticipated)

November 30, 2020

Study Completion (Anticipated)

December 31, 2020

Study Registration Dates

First Submitted

July 19, 2019

First Submitted That Met QC Criteria

October 26, 2020

First Posted (Actual)

October 30, 2020

Study Record Updates

Last Update Posted (Actual)

October 30, 2020

Last Update Submitted That Met QC Criteria

October 26, 2020

Last Verified

September 1, 2020

More Information

Terms related to this study

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Depression

Clinical Trials on transcranial direct current stimulation

3
Subscribe