Emerging treatment strategies in wound care

Marjan Mirhaj, Sheyda Labbaf, Mohamadreza Tavakoli, Alexander Marcus Seifalian, Marjan Mirhaj, Sheyda Labbaf, Mohamadreza Tavakoli, Alexander Marcus Seifalian

Abstract

Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.

Keywords: cells therapy; platelet therapy; skin tissue engineering; wound dressing; wound healing.

Conflict of interest statement

The authors declare no conflicts of interest.

© 2022 The Authors. International Wound Journal published by Medicalhelplines.com Inc (3M) and John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Methodologies used for wound healing
FIGURE 2
FIGURE 2
Four stages of wound healing process
FIGURE 3
FIGURE 3
Protection of wound against microorganisms by covering the wound by a porous wound dressing
FIGURE 4
FIGURE 4
Schematic illustration of wound treatment by negative pressure wound therapy
FIGURE 5
FIGURE 5
Schematic illustrator of graphene oxide nanomaterials and their application in tissue engineering, particularly in nerve, muscle, heart, skin, cartilage, dental field, and other tissues

References

    1. Zhang M, Wang G, Wang D, et al. Ag@ MOF‐loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int J Biol Macromol. 2021;175:481‐494.
    1. Vig K, Chaudhari A, Tripathi S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):789.
    1. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):735.
    1. Wan R, Weissman JP, Grundman K, Lang L, Grybowski DJ, Galiano RD. Diabetic wound healing: the impact of diabetes on myofibroblast activity and its potential therapeutic treatments. Wound Repair Regen. 2021;29(4):573‐581.
    1. Tiscar‐González V, Menor‐Rodríguez MJ, Rabadán‐Sainz C, et al. Clinical and economic impact of wound care using a polyurethane foam multilayer dressing. Adv Skin Wound Care. 2021;34(1):23.
    1. Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: an overview of the evidence. Adv Wound Care. 2015;4(7):373‐381.
    1. Weigelt MA, McNamara SA, Sanchez D, Hirt PA, Kirsner RS. Evidence‐based review of antibiofilm agents for wound care. Adv Wound Care. 2021;10(1):13‐23.
    1. Moeini A, Pedram P, Makvandi P, Malinconico M, d'Ayala GG. Wound healing and antimicrobial effect of active secondary metabolites in chitosan‐based wound dressings: a review. Carbohydr Polym. 2020;233:115839.
    1. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological Strategies for Engineering Complex Tissues. Nat Nanotechnol. 2021;6:13‐22.
    1. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):1‐25.
    1. Popa LG, Giurcaneanu C, Mihai MM, et al. The use of cadaveric skin allografts in the management of extensive wounds. Rom J Leg Med. 2021;29:37‐44.
    1. Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19(1):1‐12.
    1. Nathoo R, Howe N, Cohen G. Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol. 2014;7(10):44.
    1. Sommerfeld SD, Cherry C, Schwab RM, et al. Interleukin‐36γ–producing macrophages drive IL‐17–mediated fibrosis. Sci Immunol. 2019;4(40):eaax4783.
    1. Henn D, Chen K, Maan ZN, et al. Cryopreserved human skin allografts promote angiogenesis and dermal regeneration in a murine model. Int Wound J. 2020;17(4):925‐936.
    1. Cammarata E, Giorgione R, Esposto E, Mazzoletti V, Boggio P, Savoia P. Minced skin grafting: a minimally invasive and low‐cost procedure to treat Pyoderma gangrenosum. Adv Skin Wound Care. 2021;34(2):1‐3.
    1. Miyanaga T, Kishibe M, Yamashita M, Kaneko T, Kinoshita F, Shimada K. Minced skin grafting for promoting wound healing and improving donor‐site appearance after split‐thickness skin grafting: a prospective half‐side comparative trial. Plast Reconstr Surg. 2019;144(2):475‐483.
    1. Panayi AC, Haug V, Liu Q, et al. Novel application of autologous micrografts in a collagen‐glycosaminoglycan scaffold for diabetic wound healing. Biomed Mater. 2021;16(3):035032.
    1. Zheng X, Li X, Chen T, et al. Effect of the orientation of microskin on the survival rate of transplantation and improving the method. Int J Clin Exp Pathol. 2021;14(2):186.
    1. Zhao H, Chen Y, Zhang C, Fu X. Autologous epidermal cell suspension: a promising treatment for chronic wounds. J Tissue Viability. 2016;25(1):50‐56.
    1. Chen L, Xu Y, Zhao J, et al. Conditioned medium from hypoxic bone marrow‐derived mesenchymal stem cells enhances wound healing in mice. PLoS One. 2014;9(4):e96161.
    1. Aragona M, Dekoninck S, Rulands S, et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun. 2017;8(1):1‐14.
    1. Otero‐Viñas M, Falanga V. Mesenchymal stem cells in chronic wounds: the spectrum from basic to advanced therapy. Adv Wound Care. 2016;5(4):149‐163.
    1. Gentile P, Sterodimas A, Calabrese C, et al. Regenerative application of stromal vascular fraction cells enhanced fat graft maintenance: clinical assessment in face rejuvenation. Expert Opin Biol Ther. 2020;20(12):1503‐1513.
    1. Gentile P, Sterodimas A, Pizzicannella J, et al. Systematic review: allogenic use of stromal vascular fraction (SVF) and decellularized extracellular matrices (ECM) as advanced therapy medicinal products (ATMP) in tissue regeneration. Int J Mol Sci. 2020;21(14):4982.
    1. Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S. Impact of the different preparation methods to obtain human adipose‐derived stromal vascular fraction cells (AD‐SVFs) and human adipose‐derived mesenchymal stem cells (AD‐MSCs): enzymatic digestion versus mechanical centrifugation. Int J Mol Sci. 2019;20(21):5471.
    1. Gentile P, Garcovich S. Systematic review: adipose‐derived mesenchymal stem cells, platelet‐rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects. Int J Mol Sci. 2021;22(4):1538.
    1. Gentile P, Kothari A, Casella D, Calabrese C. Fat graft enhanced with adipose‐derived stem cells in aesthetic breast augmentation: clinical, histological, and instrumental evaluation. Aesthet Surg J. 2020;40(9):962‐977.
    1. Etulain J. Platelets in wound healing and regenerative medicine. Platelets. 2018;29(6):556‐568.
    1. Levoux J, Prola A, Lafuste P, et al. Platelets facilitate the wound‐healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 2021;33(2):283‐299.e9.
    1. Miron RJ, Zhang Y. Autologous liquid platelet rich fibrin: a novel drug delivery system. Acta Biomater. 2018;75:35‐51.
    1. Periayah MH, Halim AS, Saad AZM. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol‐Oncol Stem Cell Res. 2017;11(4):319–327.
    1. Pavlovic V, Ciric M, Jovanovic V, Trandafilovic M, Stojanovic P. Platelet‐rich fibrin: basics of biological actions and protocol modifications. Open Med. 2021;16(1):446‐454.
    1. Caruana A, Savina D, Macedo JP, Soares SC. From platelet‐rich plasma to advanced platelet‐rich fibrin: biological achievements and clinical advances in modern surgery. Eur J Dentistry. 2019;13(02):280‐286.
    1. Yu H, Wang G, Zhang J, Hong Y, Zhang K, Cui H. Microspheres powder as potential clinical auxiliary materials for combining with platelet‐rich plasma to prepare cream gel towards wound treatment. Appl Mater Today. 2022;27(10140):1–15. 10.1016/j.apmt.2022.101408
    1. Zhou M, Lin F, Li W, Shi L, Li Y, Shan G. Development of nanosilver doped carboxymethyl chitosan‐polyamideamine alginate composite dressing for wound treatment. Int J Biol Macromol. 2021;166:1335‐1351.
    1. Lei X, Yang Y, Shan G, Pan Y, Cheng B. Preparation of ADM/PRP freeze‐dried dressing and effect of mice full‐thickness skin defect model. Biomed Mater. 2019;14(3):035004.
    1. Mostafaei S, Norooznezhad F, Mohammadi S, Norooznezhad AH. Effectiveness of platelet‐rich plasma therapy in wound healing of pilonidal sinus surgery: a comprehensive systematic review and meta‐analysis. Wound Repair Regen. 2017;25(6):1002‐1007.
    1. Venter NG, Marques RG, Dos Santos JS, Monte‐Alto‐Costa A. Use of platelet‐rich plasma in deep second‐and third‐degree burns. Burns. 2016;42(4):807‐814. 10.1016/j.burns.2016.01.002
    1. Mohammadi MH, Molavi B, Mohammadi S, et al. Evaluation of wound healing in diabetic foot ulcer using platelet‐rich plasma gel: a single‐arm clinical trial. Transfus Apher Sci. 2017;56(2):160‐164.
    1. Albanese A, Licata ME, Polizzi B, Campisi G. Platelet‐rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing. 2013;10(1):1‐10.
    1. Monfett M, Harrison J, Boachie‐Adjei K, Lutz G. Intradiscal platelet‐rich plasma (PRP) injections for discogenic low back pain: an update. Int Orthop. 2016;40(6):1321‐1328.
    1. Raposio E, Bertozzi N, Bonomini S, et al. Adipose‐derived stem cells added to platelet‐rich plasma for chronic skin ulcer therapy. Wounds. 2016;28(4):126‐131.
    1. Laidding SR, Josh F, Nur K, et al. The effect of combined platelet‐rich plasma and stromal vascular fraction compared with platelet‐rich plasma, stromal vascular fraction, and vaseline alone on healing of deep dermal burn wound injuries in the Wistar rat. Med Clín Práct. 2021;4:100239.
    1. Norooznezhad AH, Norooznezhad F. How could cannabinoids be effective in multiple evanescent white dot syndrome? A hypothesis. J Rep Pharma Sci. 2016;5(1):41‐44.
    1. Kobayashi Y, Saita Y, Nishio H, et al. Leukocyte concentration and composition in platelet‐rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci. 2016;21(5):683‐689.
    1. Abdullah BJ, Atasoy N, Omer AK. Evaluate the effects of platelet rich plasma (PRP) and zinc oxide ointment on skin wound healing. Ann Med Surg. 2019;37:30‐37.
    1. Singh S, Rajagopal V, Kour N, Rao M, Rao R. Platelet‐rich plasma injection and becaplermin gel as effective dressing adjuvants for treating chronic nonhealing ulcers in patients with junctional epidermolysis bullosa. J Am Acad Dermatol. 2021;84(4):e185‐e186.
    1. Yi Z, Song N, Chen Z, Fan Y, Liu Y, Zhang B. Autologous platelet‐rich plasma in the treatment of refractory wounds in cutaneous leukocytoclastic vasculitis complicated with hypertension (grade 2 moderate risk): A case report.. Transfus Apher Sci. 2021;60(4):103157‐103157.
    1. Hermida‐Nogueira L, Barrachina MN, Morán LA, et al. Deciphering the secretome of leukocyte‐platelet rich fibrin: towards a better understanding of its wound healing properties. Sci Rep. 2020;10(1):1‐11.
    1. Hsu Y‐K, Sheu S‐Y, Wang C‐Y, et al. The effect of adipose‐derived mesenchymal stem cells and chondrocytes with platelet‐rich fibrin releasates augmentation by intra‐articular injection on acute osteochondral defects in a rabbit model. The Knee. 2018;25(6):1181‐1191. 10.1016/j.knee.2018.10.005
    1. Mirhaj M, Tavakoli M, Varshosaz J, et al. Platelet rich fibrin containing nanofibrous dressing for wound healing application: fabrication, characterization and biological evaluations. Mater Sci Eng C. 2021;112541. 10.1016/j.ijbiomac.2022.02.003
    1. Tavakoli M, Mirhaj M, Labbaf S, et al. Fabrication and evaluation of Cs/PVP sponge containing platelet‐rich fibrin as a wound healing accelerator: an in vitro and in vivo study. Int J Biol Macromol. 2022;204:254‐257. 10.1016/j.msec.2021.112541
    1. Ding L, Tang S, Liang P, Wang C, Zhou P‐f, Zheng L. Bone regeneration of canine peri‐implant defects using cell sheets of adipose‐derived mesenchymal stem cells and platelet‐rich fibrin membranes. J Oral Maxillofac Surg. 2019;77(3):499‐514. 10.1016/j.joms.2018.10.018
    1. Jee Y‐J. Use of platelet‐rich fibrin and natural bone regeneration in regenerative surgery. J Korean Assoc Oral Maxillofac Surg. 2019;45(3):121‐122.
    1. Pinto NR, Ubilla M, Zamora Y, Del Rio V, Dohan Ehrenfest DM, Quirynen M. Leucocyte‐and platelet‐rich fibrin (L‐PRF) as a regenerative medicine strategy for the treatment of refractory leg ulcers: a prospective cohort study. Platelets. 2018;29(5):468‐475.
    1. Sanchez‐Avila RM, Merayo‐Lloves J, Riestra AC, et al. Plasma rich in growth factors membrane as coadjuvant treatment in the surgery of ocular surface disorders. Medicine. 2018;97(17):10.
    1. Xu F, Zou D, Dai T, et al. Effects of incorporation of granule‐lyophilised platelet‐rich fibrin into polyvinyl alcohol hydrogel on wound healing. Sci Rep. 2018;8(1):1‐10.
    1. Cabaro S, D'Esposito V, Gasparro R, et al. White cell and platelet content affects the release of bioactive factors in different blood‐derived scaffolds. Platelets. 2018;29(5):463‐467.
    1. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate‐based composite materials for wound dressing application: a mini review. Carbohydr Polym. 2020;236:116025.
    1. Liang M, Chen Z, Wang F, Liu L, Wei R, Zhang M. Preparation of self‐regulating/anti‐adhesive hydrogels and their ability to promote healing in burn wounds. J Biomed Mater Res B Appl Biomater. 2019;107(5):1471‐1482.
    1. Miguel SP, Moreira AF, Correia IJ. Chitosan based‐asymmetric membranes for wound healing: a review. Int J Biol Macromol. 2019;127:460‐475.
    1. Li X, Jiang Y, Wang F, et al. Preparation of polyurethane/polyvinyl alcohol hydrogel and its performance enhancement via compositing with silver particles. RSC Adv. 2017;7(73):46480‐46485. 10.1039/C7RA08845K
    1. Natarajan S, Harini K, Gajula GP, Sarmento B, Neves‐Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater. 2019;1(1):1‐22. 10.1186/s42833-019-0002-6
    1. Percival SL, McCarty SM. Silver and alginates: role in wound healing and biofilm control. Adv Wound Care. 2015;4(7):407‐414.
    1. Hixon KR, Klein RC, Eberlin CT, et al. A critical review and perspective of honey in tissue engineering and clinical wound healing. Adv Wound Care. 2019;8(8):403‐415.
    1. Gizaw M, Thompson J, Faglie A, Lee S‐Y, Neuenschwander P, Chou S‐F. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering. 2018;5(1):9.
    1. Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9(9):1235.
    1. Soleymani Eil Bakhtiari S, Bakhsheshi‐Rad HR, Karbasi S, et al. 3‐dimensional printing of hydrogel‐based nanocomposites: a comprehensive review on the technology description, properties, and applications. Adv Eng Mater. 2021;23(10):1‐21. 10.1002/adem.202100477
    1. Zarrintaj P, Moghaddam AS, Manouchehri S, et al. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine. 2017;12(19):2403‐2422.
    1. Wang Y, Armato U, Wu J. Targeting tunable physical properties of materials for chronic wound care. Front Bioeng Biotechnol. 2020;8:584.
    1. Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ‐dependent cell behaviour. Nat Mater. 2018;17(12):1063‐1075.
    1. Seidel D, Diedrich S, Herrle F, et al. Negative pressure wound therapy vs conventional wound treatment in subcutaneous abdominal wound healing impairment: the SAWHI randomized clinical trial. JAMA Surg. 2020;155(6):469‐478.
    1. Omar M, Gathen M, Liodakis E, et al. A comparative study of negative pressure wound therapy with and without instillation of saline on wound healing. J Wound Care. 2016;25(8):475‐478.
    1. Galiano RD, Hudson D, Shin J, et al. Incisional negative pressure wound therapy for prevention of wound healing complications following reduction mammaplasty. Plast Reconstr Surg Glob Open. 2018;6(1):1‐8.
    1. Frazee R, Manning A, Abernathy S, et al. Open vs closed negative pressure wound therapy for contaminated and dirty surgical wounds: a prospective randomized comparison. J Am Coll Surg. 2018;226(4):507‐512.
    1. Hall KD, Patterson JS. Three cases describing outcomes of negative‐pressure wound therapy with instillation for complex wound healing. J Wound Ostomy Cont Nurs. 2019;46(3):251‐255.
    1. Ueno T, Omi T, Uchida E, Yokota H, Kawana S. Evaluation of hyperbaric oxygen therapy for chronic wounds. J Nippon Med Sch. 2014;81(1):4‐11.
    1. Perren S, Gatt A, Papanas N, Formosa C. Hyperbaric oxygen therapy in ischaemic foot ulcers in type 2 diabetes: a clinical trial. Open Cardiovasc Med J. 2018;12:80.
    1. Lansdorp CA, Buskens CJ, Gecse KB, D'Haens GR, Van Hulst RA. Wound healing of metastatic perineal Crohn's disease using hyperbaric oxygen therapy: a case series. United European Gastroenterol J. 2020;8(7):820‐827.
    1. Kajagar BM, Godhi AS, Pandit A, Khatri S. Efficacy of low level laser therapy on wound healing in patients with chronic diabetic foot ulcers—a randomised control trial. Indian J Surg. 2012;74(5):359‐363.
    1. Vitse J, Bekara F, Byun S, Herlin C, Teot L. A double‐blind, placebo‐controlled randomized evaluation of the effect of low‐level laser therapy on venous leg ulcers. Int J Low Extrem Wounds. 2017;16(1):29‐35.
    1. Kohale BR, Agrawal AA, Raut CP. Effect of low‐level laser therapy on wound healing and patients' response after scalpel gingivectomy: a randomized clinical split‐mouth study. J Indian Soc Periodontol. 2018;22(5):419.
    1. Choi YH, Cho YS, Lee JH, et al. Cadaver skin allograft may improve mortality rate for burns involving over 30% of total body surface area: a propensity score analysis of data from four burn centers. Cell Tissue Bank. 2018;19(4):645‐651.
    1. Costa BA, Lima Júnior EM, de Moraes Filho MO, et al. Use of tilapia skin as a xenograft for pediatric burn treatment: a case report. J Burn Care Res. 2019;40(5):714‐717.
    1. Zuo KJ, Umraw N, Cartotto R. Scar quality of skin graft borders: a prospective, randomized, double‐blinded evaluation. J Burn Care Res. 2019;40(5):529‐534.
    1. Kirsner RS, Margolis DJ, Baldursson BT, et al. Fish skin grafts compared to human amnion/chorion membrane allografts: a double‐blind, prospective, randomized clinical trial of acute wound healing. Wound Repair Regen. 2020;28(1):75‐80.
    1. Sheckter CC, Meyerkord NL, Sinskey YL, Clark P, Anderson K, Van Vliet M. The optimal treatment for partial thickness burns: a cost‐utility analysis of skin allograft vs. topical silver dressings. J Burn Care Res. 2020;41(3):450‐456.
    1. Momeni M, Fallah N, Bajouri A, et al. A randomized, double‐blind, phase I clinical trial of fetal cell‐based skin substitutes on healing of donor sites in burn patients. Burns. 2019;45(4):914‐922.
    1. Molnar JA, Walker N, Steele TN, et al. Initial experience with autologous skin cell suspension for treatment of deep partial‐thickness facial burns. J Burn Care Res. 2020;41(5):1045‐1051.
    1. Maghsoudi H, Nezami N, Mirzajanzadeh M. Enhancement of burn wounds healing by platelet dressing. Int J Burns Trauma. 2013;3(2):96.
    1. Prochazka V, Klosova H, Stetinsky J, et al. Addition of platelet concentrate to dermo‐epidermal skin graft in deep burn trauma reduces scarring and need for revision surgeries. Biomed Pap Med Fac Univ Palacky, Olomouc, Czech Repub. 2014;158(2):242.
    1. Marck RE, Gardien KL, Stekelenburg CM, et al. The application of platelet‐rich plasma in the treatment of deep dermal burns: a randomized, double‐blind, intra‐patient controlled study. Wound Repair Regen. 2016;24(4):712‐720.
    1. Kızıltoprak M, Uslu MÖ. Comparison of the effects of injectable platelet‐rich fibrin and autologous fibrin glue applications on palatal wound healing: a randomized controlled clinical trial. Clin Oral Investig. 2020;24:4549‐4561.
    1. Totsuka Sutto SE, Rodríguez Roldan YI, Cardona Muñoz EG, et al. Efficacy and safety of the combination of isosorbide dinitrate spray and chitosan gel for the treatment of diabetic foot ulcers: a double‐blind, randomized, clinical trial. Diab Vasc Dis Res. 2018;15(4):348‐351.
    1. Halim AS, Nor FM, Saad AZM, Nasir NAM, Norsa'adah B, Ujang Z. Efficacy of chitosan derivative films versus hydrocolloid dressing on superficial wounds. J Taibah Univ Med Sci. 2018;13(6):512‐520.
    1. Mahajan M, Gupta MK, Bande C, Meshram V. Comparative evaluation of healing pattern after surgical excision of oral mucosal lesions by using platelet‐rich fibrin (PRF) membrane and collagen membrane as grafting materials—a randomized clinical trial. J Oral Maxillofac Surg. 2018;76(7):1469.e1‐1469.e9.
    1. Abdollahimajd F, Moravvej H, Dadkhahfar S, Mahdavi H, Mohebali M, Mirzadeh H. Chitosan‐based biocompatible dressing for treatment of recalcitrant lesions of cutaneous leishmaniasis: a pilot clinical study. Indian J Dermatol Venereol Leprol. 2019;85:609‐614.
    1. Tsai H‐C, Shu H‐C, Huang L‐C, Chen C‐M. A randomized clinical trial comparing a collagen‐based composite dressing versus topical antibiotic ointment on healing full‐thickness skin wounds to promote epithelialization. Formos J Surg. 2019;52(2):52.
    1. Park KH, Kwon JB, Park JH, Shin JC, Han SH, Lee JW. Collagen dressing in the treatment of diabetic foot ulcer: a prospective, randomized, placebo‐controlled, single‐center study. Diabetes Res Clin Pract. 2019;156:107861.
    1. Djavid GE, Tabaie SM, Tajali SB, et al. Application of a collagen matrix dressing on a neuropathic diabetic foot ulcer: a randomised control trial. J Wound Care. 2020;29(Sup3):S13‐S18.
    1. Haque AE, Ranganath K, Prasad K, Munoyath SK, Lalitha R. Effectiveness of chitosan versus collagen membrane for wound healing in maxillofacial soft tissue defects: a comparative clinical study. Trends Biomater. Artif. Organs. 2020;34(2):61‐66.
    1. Femminella B, Iaconi MC, Di Tullio M, et al. Clinical comparison of platelet‐rich fibrin and a gelatin sponge in the management of palatal wounds after epithelialized free gingival graft harvest: a randomized clinical trial. J Periodontol. 2016;87(2):103‐113.
    1. Ehab K, Abouldahab O, Hassan A, El‐Sayed KMF. Alvogyl and absorbable gelatin sponge as palatal wound dressings following epithelialized free gingival graft harvest: a randomized clinical trial. Clin Oral Investig. 2020;24(4):1517‐1525.
    1. Davidson A, Jina NH, Marsh C, Than M, Simcock JW. Do functional keratin dressings accelerate epithelialization in human partial thickness wounds? A randomized controlled trial on skin graft donor sites. Eplasty. 2013;13:375‐381.
    1. Jull A, Wadham A, Bullen C, Parag V, Weller C, Waters J. Wool‐derived keratin dressings versus usual care dressings for treatment of slow healing venous leg ulceration: a randomised controlled trial (Keratin4VLU). BMJ Open. 2020;10(7):e036476.
    1. Wang M, Huang X, Zheng H, et al. Nanomaterials applied in wound healing: mechanisms, limitations and perspectives. J Control Release. 2021;337:236‐247.
    1. Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials. 2019;12(13):2176.
    1. Matei A‐M, Caruntu C, Georgescu SR, et al. Applications of nanosized‐lipid‐based drug delivery systems in wound care. Appl Sci. 2021;11(11):4915.
    1. Rathinavel S, Korrapati PS, Kalaiselvi P, Dharmalingam S. Mesoporous silica incorporated PCL/curcumin nanofiber for wound healing application. Eur J Pharm Sci. 2021;167:106021.
    1. Souto EB, Ribeiro AF, Ferreira MI, et al. New nanotechnologies for the treatment and repair of skin burns infections. Int J Mol Sci. 2020;21(2):393.
    1. Jahromi MAM, Zangabad PS, Basri SMM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33‐64.
    1. Mahmoodi M, Haghighi V, Mirhaj M, Tavafoghi M, Shams F, Darabi A. Highly osteogenic and mechanically strong nanofibrous scaffolds based on functionalized multi‐walled carbon nanotubes‐reinforced electrospun keratin/poly (ε‐caprolactone). Mater Today Commun. 2021;27:1‐12. 10.1016/j.mtcomm.2021.102401
    1. Soleymani Eil Bakhtiari S, Bakhsheshi‐Rad HR, Karbasi S, et al. Polymethyl methacrylate‐based bone cements containing carbon nanotubes and graphene oxide: an overview of physical, mechanical, and biological properties. Polymers. 2020;12(7):1469.
    1. Kale SN, Kitture R, Ghosh S, Chopade BA, Yakhmi JV. Nanomaterials as enhanced antimicrobial agent/activity‐enhancer for transdermal applications: a review. Antimicrobial Nanoarchitecton. 2017;279‐321.
    1. Patil TV, Patel DK, Dutta SD, Ganguly K, Randhawa A, Lim K‐T. Carbon nanotubes‐based hydrogels for bacterial eradiation and wound‐healing applications. Appl Sci. 2021;11(20):9550.
    1. Wang S, Li Y, Zhao R, Jin T, Zhang L, Li X. Chitosan surface modified electrospun poly (ε‐caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties. Int J Biol Macromol. 2017;104:708‐715.
    1. Madhusoodan A, Das K, Mili B, et al. In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. Biotechnol Rep. 2019;24:e00387.
    1. Tavakoli M, Karbasi S, Soleymani Eil Bakhtiari S. Evaluation of physical, mechanical, and biodegradation of chitosan/graphene oxide composite as bone substitutes. Polymer Plast Technol Mater. 2020;59(4):430‐440.
    1. Tavakoli M, Bakhtiari SSE, Karbasi S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: physical, mechanical and biological evaluation. Int J Biol Macromol. 2020;149:783‐793.
    1. Mahmoodi M, Hydari MH, Mahmoodi L, Gazanfari L, Mirhaj M. Electrophoretic deposition of graphene oxide reinforced hydroxyapatite on the tantalum substrate for bone implant applications: in vitro corrosion and bio‐tribological behavior. Surf Coat Technol. 2021;424:127642.
    1. Nešović K, Mišković‐Stanković V. Silver/poly (vinyl alcohol)/graphene hydrogels for wound dressing applications: understanding the mechanism of silver, antibacterial agent release. J Vinyl Additive Technol. 2022;28(1):196‐210.
    1. Famkar E, Pircheraghi G, Nazockdast H. Effectively exerting the reinforcement of polyvinyl alcohol nanocomposite hydrogel via poly (dopamine) functionalized graphene oxide. Composites Sci Technol. 2022;217:109119. 10.1016/j.compscitech.2021.109119
    1. Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self‐healing via dual‐dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022. 10.1021/acsnano.1c11040
    1. Orsu P, Haider HY, Koyyada A. Bioengineering for curcumin loaded carboxymethyl guargum/reduced graphene oxide nanocomposites for chronic wound healing applications. Int J Pharm. 2021;606:120928.
    1. Orsu P, Koyyada A. Recent progresses and challenges in graphene based nano materials for advanced therapeutical applications: a comprehensive review. Mater Today Commun. 2020;22:1–26.
    1. Hasan MY, Teo R, Nather A. Negative‐pressure wound therapy for management of diabetic foot wounds: a review of the mechanism of action, clinical applications, and recent developments. Diabet Foot Ankle. 2015;6(1):27618.
    1. Shimada K, Ojima Y, Ida Y, Komiya T, Matsumura H. Negative‐pressure wound therapy for donor‐site closure in radial forearm free flap: a systematic review and meta‐analysis. Int Wound J. 2022;19(2):316‐325.
    1. De Rooij L, van Kuijk S, van Haaren E, et al. Negative pressure wound therapy does not decrease postoperative wound complications in patients undergoing mastectomy and flap fixation. Sci Rep. 2021;11(1):1‐7.
    1. Matusiak D, Wichtowski M, Pieszko K, Kobylarek D, Murawa D. Is negative‐pressure wound therapy beneficial in modern‐day breast surgery? Contemp Oncol. 2019;23(2):69.
    1. Skrepnek GH, Mills JL, Lavery LA, Armstrong DG. Health care service and outcomes among an estimated 6.7 million ambulatory care diabetic foot cases in the US. Diabetes Care. 2017;40(7):936‐942.
    1. Margolis DJ, Gupta J, Hoffstad O, et al. Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation: a cohort study. Diabetes Care. 2013;36(7):1961‐1966.
    1. Lansdorp CA, Gecse KB, Buskens CJ, et al. Hyperbaric oxygen therapy for the treatment of perianal fistulas in 20 patients with Crohn's disease. Aliment Pharmacol Ther. 2021;53(5):587‐597.
    1. Hartmann D, Martins R, da Silva T, et al. Oxidative stress is involved in LLLT mechanism of action on skin healing in rats. Braz J Med Biol Res. 2021;54(6):1‐9. 10.1590/1414-431X202010293
    1. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low‐level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005;31(3):334‐340.
    1. Elvir‐Lazo OL, Yumul R, White PF. Cold laser therapy for acute and chronic pain management. Topics Pain Manag. 2020;36(2):1‐10.
    1. Tabares FL, Junkar I. Cold plasma systems and their application in surface treatments for medicine. Molecules. 2021;26(7):1903.
    1. Jung JM, Yoon HK, Jung CJ, et al. Cold plasma treatment promotes full‐thickness healing of skin wounds in murine models. Int J Lower Extremity Wounds. 2021;15:15347346211002144. 10.1177/15347346211002144
    1. Nakajima Y, Mukai K, Rahayu HSE, et al. Cold plasma on full‐thickness cutaneous wound accelerates healing through promoting inflammation, re‐epithelialization and wound contraction. Clin Plasma Med. 2014;2(1):28‐35.
    1. Amini MR, Sheikh Hosseini M, Fatollah S, et al. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. J Diabetes Metab Disord. 2020;19(2):895‐905.
    1. Stratmann B, Costea T‐C, Nolte C, et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial. JAMA Netw Open. 2020;3(7):e2010411.
    1. Isbary G, Shimizu T, Zimmermann J, et al. Randomized placebo‐controlled clinical trial showed cold atmospheric argon plasma relieved acute pain and accelerated healing in herpes zoster. Clin Plasma Med. 2014;2(2):50‐55.
    1. Gareri C, Bennardo L, De Masi G. Use of a new cold plasma tool for psoriasis treatment: a case report. SAGE Open Med Case Rep. 2020;8:2050313X20922709.
    1. Friedman PC, Fridman G, Fridman A. Using cold plasma to treat warts in children: a case series. Pediatr Dermatol. 2020;37(4):706‐709.
    1. Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene oxide: opportunities and challenges in biomedicine. Nanomaterials. 2021;11(5):1083.
    1. Aleemardani M, Bagher Z, Farhadi M, et al. Can tissue engineering bring hope to the development of human tympanic membrane? Tissue Eng Part B Rev. 2021;27(6):572‐589. 10.1089/ten.teb.2020.0176
    1. Nezakati T. Development of a Graphene‐POSS‐Nanocomposite Conductive Material for Biomedical Application. London: University College London; 2016.
    1. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev. 2018;118(14):6766‐6843.

Source: PubMed

3
Subscribe