Functional electrical stimulation-assisted cycle ergometry in the critically ill: protocol for a randomized controlled trial

Petr Waldauf, Jan Gojda, Tomáš Urban, Natália Hrušková, Barbora Blahutová, Marie Hejnová, Kateřina Jiroutková, Michal Fric, Pavel Jánský, Jana Kukulová, Francis Stephens, Kamila Řasová, František Duška, Petr Waldauf, Jan Gojda, Tomáš Urban, Natália Hrušková, Barbora Blahutová, Marie Hejnová, Kateřina Jiroutková, Michal Fric, Pavel Jánský, Jana Kukulová, Francis Stephens, Kamila Řasová, František Duška

Abstract

Background: Intensive care unit (ICU)-acquired weakness is the most important cause of failed functional outcome in survivors of critical care. Most damage occurs during the first week when patients are not cooperative enough with conventional rehabilitation. Functional electrical stimulation-assisted cycle ergometry (FES-CE) applied within 48 h of ICU admission may improve muscle function and long-term outcome.

Methods: An assessor-blinded, pragmatic, single-centre randomized controlled trial will be performed. Adults (n = 150) mechanically ventilated for < 48 h from four ICUs who are estimated to need > 7 days of critical care will be randomized (1:1) to receive either standard of care or FES-CE-based intensified rehabilitation, which will continue until ICU discharge.

Primary outcome: quality of life measured by 36-Item Short Form Health Survey score at 6 months.

Secondary outcomes: functional performance at ICU discharge, muscle mass (vastus ultrasound, N-balance) and function (Medical Research Council score, insulin sensitivity). In a subgroup (n = 30) we will assess insulin sensitivity and perform skeletal muscle biopsies to look at mitochondrial function, fibre typing and regulatory protein expression.

Trial registration: ClinicalTrials.gov, NCT02864745. Registered on 12 August 2016.

Keywords: Critically ill; Early rehabilitation; Functional electrical stimulation-assisted cycle ergometry; Intensive care unit; Mobility; Physical therapy.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Planned flowchart of patients enrolled into the trial. D7 day 7, D/C discharge, FES-CE functional electrical stimulation-assisted cycle ergometry, ICU intensive care unit, tx treatment, NMS neuromuscular stimulation, PCBE passive cycling-based exercise
Fig. 2
Fig. 2
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) figure. D day, D/C discharge, EGDR early goal-directed rehabilitation, F-up follow-up, ICU intensive care unit, MRC Medical Research Council, MV mechanical ventilation, RHB rehabilitation, SF-36 Short Form 36, SOFA Sequential Organ Failure Assessment, CCS Charlson comorbidity score, ROM range of motion, PFIT physical function test for use in the intensive care unit
Fig. 3
Fig. 3
Protocol of intensified goal-directed rehabilitation. FES-CE functional electrical stimulation-assisted cycle ergometry, FIO2 fraction of inspired oxygen, LL lower limb, RASS Richmond Agitation and Sedation Scale, UL upper limb

References

    1. Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med. 2014;42:849–859. doi: 10.1097/CCM.0000000000000040.
    1. Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42:725–738. doi: 10.1007/s00134-016-4321-8.
    1. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;370:1626–1635. doi: 10.1056/NEJMra1209390.
    1. Sacanella E, Perez-Castejon JM, Nicolas JM, Masanes F, Navarro M, Castro P, et al. Functional status and quality of life 12 months after discharge from a medical ICU in healthy elderly patients: a prospective observational study. Crit Care. 2011;15:R105. doi: 10.1186/cc10121.
    1. Herridge MS. Mobile, awake and critically ill. CMAJ. 2008;178:725–726. doi: 10.1503/cmaj.080178.
    1. Needham DM. Mobilizing patients in the intensive care unit: improving neuromuscular weakness and physical function. JAMA. 2008;300:1685–1690. doi: 10.1001/jama.300.14.1685.
    1. Minhas MA, Velasquez AG, Kaul A, Salinas PD, Celi LA. Effect of protocolized sedation on clinical outcomes in mechanically ventilated intensive care unit patients: a systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2015;90:613–623. doi: 10.1016/j.mayocp.2015.02.016.
    1. Saunders CB. Preventing secondary complications in trauma patients with implementation of a multidisciplinary mobilization team. J Trauma Nurs. 2015;22:170–174. doi: 10.1097/JTN.0000000000000127.
    1. Hanekom Susan D, Louw Quinette, Coetzee Andre. The way in which a physiotherapy service is structured can improve patient outcome from a surgical intensive care: a controlled clinical trial. Critical Care. 2012;16(6):R230. doi: 10.1186/cc11894.
    1. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388:1377–1388. doi: 10.1016/S0140-6736(16)31637-3.
    1. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015;41:865–874. doi: 10.1007/s00134-015-3763-8.
    1. Sommers J, Engelbert RHH, Dettling-Ihnenfeldt D, Gosselink R, Spronk PE, Nollet F, et al. Physiotherapy in the intensive care unit: an evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin Rehabil. 2015;29:1051–1063. doi: 10.1177/0269215514567156.
    1. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure. JAMA. 2016;315:2694. doi: 10.1001/jama.2016.7201.
    1. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499–2505. doi: 10.1097/CCM.0b013e3181a38937.
    1. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Needham DM, Korupolu R, Zanni JM, Pradhan P, Colantuoni E, Palmer JB, et al. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. Arch Phys Med Rehabil. 2010;91:536–542. doi: 10.1016/j.apmr.2010.01.002.
    1. Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Physiological effects and safety of an early, combined endurance and resistance training in mechanically ventilated, critically ill patients. PLoS One. 2018;101:e344–e345.
    1. Wright SE, Thomas K, Watson G, Baker C, Bryant A, Chadwick TJ, et al. Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial. Thorax. 2018;73:213–221. doi: 10.1136/thoraxjnl-2016-209858.
    1. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007;35:139–145. doi: 10.1097/01.CCM.0000251130.69568.87.
    1. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care. 2013;17:R156. doi: 10.1186/cc12835.
    1. Sricharoenchai T, Parker AM, Zanni JM, Nelliot A, Dinglas VD, Needham DM. Safety of physical therapy interventions in critically ill patients: a single-center prospective evaluation of 1110 intensive care unit admissions. J Crit Care. 2014;29:395–400. doi: 10.1016/j.jcrc.2013.12.012.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Clinical review: Critical illness polyneuropathy and myopathy. Crit Care. 2008;12:238. doi: 10.1186/cc7100.
    1. Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V, et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008;40:185–189. doi: 10.2340/16501977-0139.
    1. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–1600. doi: 10.1001/jama.2013.278481.
    1. Topp R, Ditmyer M, King K, Doherty K, Hornyak J., 3rd The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin Issues. 2002;13:263–276. doi: 10.1097/00044067-200205000-00011.
    1. Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, de Albuquerque IM. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. J Bras Pneumol. 2017;43:134–139. doi: 10.1590/s1806-37562016000000170.
    1. Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA. 2018;320:368–378. doi: 10.1001/jama.2018.9592.
    1. França E, Ribeiro L, Lamenha G, Magalhães I, Figueiredo T, Costa M, et al. Oxidative stress and immune system analysis after cycle ergometer use in critical patients. Clinics. 2017;72:143–149. doi: 10.6061/clinics/2017(03)03.
    1. Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest. 2003;124:292–296. doi: 10.1378/chest.124.1.292.
    1. Gerovasili V, Stefanidis K, Vitzilaios K, Karatzanos E, Politis P, Koroneos A, et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care. 2009;13:R161. doi: 10.1186/cc8123.
    1. Routsi Christina, Gerovasili Vasiliki, Vasileiadis Ioannis, Karatzanos Eleftherios, Pitsolis Theodore, Tripodaki Elli Sophia, Markaki Vasiliki, Zervakis Dimitrios, Nanas Serafim. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Critical Care. 2010;14(2):R74. doi: 10.1186/cc8987.
    1. Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alexandria J Med. 2013;49:309–315. doi: 10.1016/j.ajme.2013.03.011.
    1. Kho ME, Truong AD, Zanni JM, Ciesla ND, Brower RG, Palmer JB, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment. J Crit Care. 2014;30:32–39. doi: 10.1016/j.jcrc.2014.09.014.
    1. Goll M, Wollersheim T, Haas K, Moergeli R, Malleike J, Nehls F, et al. Randomised controlled trial using daily electrical muscle stimulation (EMS) in critically ill patients to prevent intensive care unit (ICU) acquired weakness (ICUAW) Intensive Care Med Exp. 2015;3:1–2. doi: 10.1186/2197-425X-3-S1-A809.
    1. Fischer A, Spiegl M, Altmann K, Winkler A, Salamon A, Themessl-Huber M, et al. Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Crit Care. 2016;20:1–13. doi: 10.1186/s13054-016-1199-3.
    1. Fontes Cerqueira TC, de Cerqueira Neto ML, de AP CL, Oliveira GU, da Silva Júnior WM, Carvalho VO, et al. Ambulation capacity and functional outcome in patients undergoing neuromuscular electrical stimulation after cardiac valve surgery: a randomised clinical trial. Medicine (Baltimore) 2018;97:e13012. doi: 10.1097/MD.0000000000013012.
    1. Koçan Kurtoğlu D, Taştekin N, Birtane M, Tabakoğlu E, Süt N. Effectiveness of neuromuscular electrical stimulation on auxiliary respiratory muscles in patients with chronic obstructive pulmonary disease treated in the intensive care unit. Turk J Phys Med Rehab. 2015;61:12–17. doi: 10.5152/tftrd.2015.04378.
    1. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85:201–215.
    1. Bauman WA, Spungen AM, Adkins RH, Kemp BJ. Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol. 1999;11:88–96. doi: 10.1080/10400435.1999.10131993.
    1. Kjaer M, Pollack SF, Mohr T, Weiss H, Gleim GW, Bach FW, et al. Regulation of glucose turnover and hormonal responses during electrical cycling in tetraplegic humans. Am J Physiol. 1996;271:R191–R199.
    1. Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury—part II. J Spinal Cord Med. 2015;38:23–37. doi: 10.1179/2045772314Y.0000000244.
    1. Parry SM, Berney S, Warrillow S, El-Ansary D, Bryant AL, Hart N, et al. Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study. J Crit Care. 2014;29:695.e1–695.e7. doi: 10.1016/j.jcrc.2014.03.017.
    1. Gojda J, Waldauf P, Hruskova N, Blahutova B, Krajcova A, Urban T, et al. Lactate production without hypoxia in skeletal muscle during electrical cycling: crossover study of femoral venous–arterial differences in healthy volunteers. PLoS One. 2019;14:e0200228. doi: 10.1371/journal.pone.0200228.
    1. Hettinga DM, Andrews BJ. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med. 2008;38:825–838. doi: 10.2165/00007256-200838100-00003.
    1. Farrell PA. Protein metabolism and age: influence of insulin and resistance exercise. Int J Sport Nutr Exerc Metab. 2001;11(Suppl):S150–S163. doi: 10.1123/ijsnem.11.s1.s150.
    1. Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, et al. Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med. 2013;187:387–396. doi: 10.1164/rccm.201209-1649OC.
    1. Clifton GL, Robertson CS, Grossman RG, Hodge S, Foltz R, Garza C. The metabolic response to severe head injury. J Neurosurg. 1984;60:687–696. doi: 10.3171/jns.1984.60.4.0687.
    1. Finfer S, Chittock DR, Su SY-S, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625.
    1. Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJC. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond) 2015;128:357–365. doi: 10.1042/CS20140447.
    1. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223. doi: 10.1016/S0140-6736(02)09459-X.
    1. Carre JE, Orban J-C, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182:745–751. doi: 10.1164/rccm.201003-0326OC.
    1. Jiroutkova K, Krajcova A, Ziak J, Fric M, Gojda J, Dzupa V, et al. Mitochondrial function in an in vitro model of skeletal muscle of patients with protracted critical illness and intensive care unit-acquired weakness. JPEN J Parenter Enteral Nutr. United States. 2017;41:1213–1221.
    1. Jiroutkova K, Krajcova A, Ziak J, Fric M, Waldauf P, Dzupa V, et al. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness. Crit Care. 2015;19:448. doi: 10.1186/s13054-015-1160-x.
    1. Wyrwich KW, Tierney WM, Babu AN, Kroenke K, Wolinsky FD. A comparison of clinically important differences in health-related quality of life for patients with chronic lung disease, asthma, or heart disease. Health Serv Res. 2005;40:577–591. doi: 10.1111/j.1475-6773.2005.0l374.x.
    1. Parry Selina M, Berney Sue, Koopman René, Bryant Adam, El-Ansary Doa, Puthucheary Zudin, Hart Nicholas, Warrillow Stephen, Denehy Linda. Early rehabilitation in critical care (eRiCC): functional electrical stimulation with cycling protocol for a randomised controlled trial. BMJ Open. 2012;2(5):e001891. doi: 10.1136/bmjopen-2012-001891.
    1. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) Crit Care Med. 2001;29:1370–1379. doi: 10.1097/00003246-200107000-00012.
    1. Ziak Jakub, Krajcova Adela, Jiroutkova Katerina, Nemcova Vlasta, Dzupa Valer, Duska Frantisek. Assessing the function of mitochondria in cytosolic context in human skeletal muscle: Adopting high-resolution respirometry to homogenate of needle biopsy tissue samples. Mitochondrion. 2015;21:106–112. doi: 10.1016/j.mito.2015.02.002.
    1. Krajcova Adela, Ziak Jakub, Jiroutkova Katerina, Patkova Jana, Elkalaf Moustafa, Dzupa Valer, Trnka Jan, Duska Frantisek. Normalizing Glutamine Concentration Causes Mitochondrial Uncoupling in an In Vitro Model of Human Skeletal Muscle. Journal of Parenteral and Enteral Nutrition. 2013;39(2):180–189. doi: 10.1177/0148607113513801.
    1. Duška František, Fric Michal, Waldauf Petr, Pažout Jaroslav, Anděl Michal, Mokrejš Pavel, Tůma Petr, Pachl Jan. Frequent intravenous pulses of growth hormone together with glutamine supplementation in prolonged critical illness after multiple trauma: Effects on nitrogen balance, insulin resistance, and substrate oxidation*. Critical Care Medicine. 2008;36(6):1707–1713. doi: 10.1097/CCM.0b013e318174d499.

Source: PubMed

3
Subscribe