Mechanisms of hyperinsulinaemia in apparently healthy non-obese young adults: role of insulin secretion, clearance and action and associations with plasma amino acids

Steven Hamley, Danielle Kloosterman, Tamara Duthie, Chiara Dalla Man, Roberto Visentin, Shaun A Mason, Teddy Ang, Ahrathy Selathurai, Gunveen Kaur, Maria G Morales-Scholz, Kirsten F Howlett, Greg M Kowalski, Christopher S Shaw, Clinton R Bruce, Steven Hamley, Danielle Kloosterman, Tamara Duthie, Chiara Dalla Man, Roberto Visentin, Shaun A Mason, Teddy Ang, Ahrathy Selathurai, Gunveen Kaur, Maria G Morales-Scholz, Kirsten F Howlett, Greg M Kowalski, Christopher S Shaw, Clinton R Bruce

Abstract

Aims/hypothesis: This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia.

Methods: Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses.

Results: Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT.

Conclusions/interpretation: Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.

Keywords: Hyperinsulinaemia; Insulin secretion; Insulin sensitivity; Minimal model; Plasma amino acids; Prediabetes.

Figures

Fig. 1
Fig. 1
Plasma metabolite and hormone concentrations during the OGTT, which began at time 0 min. (a) Plasma glucose concentrations. (b) The AAB for the glucose response. (c) Plasma insulin concentrations. (d) The AAB for the insulin response. (e) Plasma C-peptide concentrations. (f) The AAB for the C-peptide response. (g) ISR. (h) The AAB for the ISR response. (i) Plasma NEFA concentrations. (j) The area below basal (ABB) for the NEFA response. (k) Plasma triacylglycerol concentrations. (l) The ABB for the triacylglycerol response. Pink circles, Q1; blue squares, Q2; black triangles, Q3; red triangles, Q4; grey diamonds, IFG; purple circles, IGT. Data are median and interquartile range. *p< 0.05 vs IGT; †p< 0.05 vs Q1; ‡p< 0.05 vs Q2; §p< 0.05 vs Q3; ¶p< 0.05 vs IFG
Fig. 2
Fig. 2
Metabolic responses during the OGTT in women vs men. The OGTT began at time 0 min. (a) Plasma glucose concentrations. (b) The AAB for the glucose response. (c) Plasma insulin concentrations. (d) The AAB for the insulin response. (e) Plasma C-peptide concentrations. (f) The AAB for the C-peptide response. (g) ISR. (h) The AAB for the ISR response. (i) Plasma NEFA concentrations. (j) The area below basal (ABB) for the NEFA response. Red circles, women; blue squares, men. Data are median and interquartile range. *p< 0.001 vs women
Fig. 3
Fig. 3
Sex-specific plasma metabolite and hormone concentrations in normoglycaemic women (a, d, g, j, m) and men (b, e, h, k, n) during the OGTT. The OGTT began at time 0 min. (a, b) Plasma glucose concentrations. (c) The AAB for the glucose response. (d, e) Plasma insulin concentrations. (f) The AAB for the insulin response. (g, h) Plasma C-peptide concentrations. (i) The AAB for the C-peptide response. (j, k) ISR. (l) The AAB for the ISR response. (m, n) Plasma NEFA concentrations. (o) The area below basal (ABB) for the NEFA response. Pink circles, Q1; blue squares, Q2; black triangles, Q3; red triangles, Q4. Data are median and interquartile range. *p< 0.05 vs Q1; †p< 0.05 vs Q2; ‡p< 0.05 vs Q3

References

    1. Dankner R, Chetrit A, Shanik MH, Raz I, Roth J. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up: a preliminary report. Diabetes Care. 2009;32(8):1464–1466. doi: 10.2337/dc09-0153.
    1. Weyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE. A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes. 2000;49(12):2094–2101. doi: 10.2337/diabetes.49.12.2094.
    1. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X) Diabetes. 1992;41(6):715–722. doi: 10.2337/diab.41.6.715.
    1. Yip J, Facchini FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J Clin Endocrinol Metab. 1998;83(8):2773–2776. doi: 10.1210/jcem.83.8.5005.
    1. Després J-P, Lamarche B, Mauriège P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med. 1996;334(15):952–958. doi: 10.1056/NEJM199604113341504.
    1. Salonen JT, Lakka TA, Lakka H-M, Valkonen V-P, Everson SA, Kaplan GA. Hyperinsulinemia is associated with the incidence of hypertension and dyslipidemia in middle-aged men. Diabetes. 1998;47(2):270–275. doi: 10.2337/diab.47.2.270.
    1. Bergman RN. Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes. 2007;56(6):1489–1501. doi: 10.2337/db07-9903.
    1. Tricò D, Natali A, Arslanian S, Mari A, Ferrannini E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight. 2018;3(24):e124912. doi: 10.1172/jci.insight.124912.
    1. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care. 2008;31(Suppl 2):S262–S268. doi: 10.2337/dc08-s264.
    1. Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: time for a conceptual framework shift. Diabetes Vasc Dis Res. 2019;16(2):118–127. doi: 10.1177/1479164119827611.
    1. Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia. 1985;28(2):70–75. doi: 10.1007/BF00279918.
    1. Marangou AG, Weber KM, Boston RC, et al. Metabolic consequences of prolonged hyperinsulinemia in humans: evidence for induction of insulin insensitivity. Diabetes. 1986;35(12):1383–1389. doi: 10.2337/diab.35.12.1383.
    1. Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. 1994;37(10):1025–1035. doi: 10.1007/BF00400466.
    1. Reaven G. All obese individuals are not created equal: insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diabetes Vasc Dis Res. 2005;2(3):105–112. doi: 10.3132/dvdr.2005.017.
    1. Jung S-H, Jung C-H, Reaven GM, Kim SH. Adapting to insulin resistance in obesity: role of insulin secretion and clearance. Diabetologia. 2018;61(3):681–687. doi: 10.1007/s00125-017-4511-0.
    1. Bonora E, Zavaroni I, Bruschi F, et al. Peripheral hyperinsulinemia of simple obesity: pancreatic hypersecretion or impaired insulin metabolism? J Clin Endocrinol Metab. 1984;59(6):1121–1127. doi: 10.1210/jcem-59-6-1121.
    1. DeFronzo RA. Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes. 1979;28(12):1095–1101. doi: 10.2337/diab.28.12.1095.
    1. Gumbiner B, Polonsky KS, Beltz WF, Wallace P, Brechtel G, Fink RI. Effects of aging on insulin secretion. Diabetes. 1989;38(12):1549–1556. doi: 10.2337/diab.38.12.1549.
    1. Steinberger J, Daniels SR. Obesity, insulin resistance, diabetes, and cardiovascular risk in children. Circulation. 2003;107(10):1448–1453. doi: 10.1161/01.CIR.0000060923.07573.F2.
    1. Man CD, Caumo A, Basu R, Rizza R, Toffolo G, Cobelli C. Measurement of selective effect of insulin on glucose disposal from labeled glucose oral test minimal model. Am J Physiol Metab. 2005;289(5):E909–E914. doi: 10.1152/ajpendo.00299.2004.
    1. Dalla Man C, Piccinini F, Basu R, Basu A, Rizza RA, Cobelli C. Modeling hepatic insulin sensitivity during a meal: validation against the euglycemic hyperinsulinemic clamp. Am J Physiol Metab. 2013;304(8):E819–E825. doi: 10.1152/ajpendo.00482.2012.
    1. Visentin R, Dalla Man C, Basu R, Basu A, Rizza RA, Cobelli C. Hepatic insulin sensitivity in healthy and prediabetic subjects: from a dual- to a single-tracer oral minimal model. Am J Physiol Metab. 2015;309(2):E161–E167. doi: 10.1152/ajpendo.00358.2014.
    1. Breda E, Cavaghan MK, Toffolo G, Polonsky KS, Cobelli C. Oral glucose tolerance test minimal model indexes of β-cell function and insulin sensitivity. Diabetes. 2001;50(1):150–158. doi: 10.2337/diabetes.50.1.150.
    1. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–326. doi: 10.1016/j.cmet.2009.02.002.
    1. Wang Q, Holmes MV, Davey Smith G, Ala-Korpela M. Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation. Diabetes Care. 2017;40(12):1779–1786. doi: 10.2337/dc17-1642.
    1. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–453. doi: 10.1038/nm.2307.
    1. Kowalski GM, Moore SM, Hamley S, Selathurai A, Bruce CR. The effect of ingested glucose dose on the suppression of endogenous glucose production in humans. Diabetes. 2017;66(9):2400–2406. doi: 10.2337/db17-0433.
    1. Ang T, Bruce CR, Kowalski GM. Postprandial aminogenic insulin and glucagon secretion can stimulate glucose flux in humans. Diabetes. 2019;68(5):939–946. doi: 10.2337/db18-1138.
    1. Hovorka R, Soons PA, Young MA. ISEC: a program to calculate insulin secretion. Comput Methods Programs Biomed. 1996;50(3):253–264. doi: 10.1016/0169-2607(96)01755-5.
    1. Kim SP, Ellmerer M, Kirkman EL, Bergman RN. β-Cell “rest” accompanies reduced first-pass hepatic insulin extraction in the insulin-resistant, fat-fed canine model. Am J Physiol Metab. 2007;292(6):E1581–E1589. doi: 10.1152/ajpendo.00351.2006.
    1. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. β-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab. 2005;90(1):493–500. doi: 10.1210/jc.2004-1133.
    1. Klein S. Is visceral fat responsible for the metabolic abnormalities associated with obesity? Implications of omentectomy. Diabetes Care. 2010;33(7):1693–1694. doi: 10.2337/dc10-0744.
    1. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci. 2009;106(36):15430–15435. doi: 10.1073/pnas.0904944106.
    1. Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Jeanrenaud B. Metabolic consequences of hyperinsulinaemia imposed on normal rats on glucose handling by white adipose tissue, muscles and liver. Biochem J. 1990;267(1):99–103. doi: 10.1042/bj2670099.
    1. Poy MN, Yang Y, Rezaei K, et al. CEACAM1 regulates insulin clearance in liver. Nat Genet. 2002;30(3):270–276. doi: 10.1038/ng840.
    1. Ghadieh HE, Russo L, Muturi HT, et al. Hyperinsulinemia drives hepatic insulin resistance in male mice with liver-specific Ceacam1 deletion independently of lipolysis. Metabolism. 2019;93:33–43. doi: 10.1016/j.metabol.2019.01.008.
    1. Takao F, Laury MC, Ktorza A, Picon L, Pénicaud L. Hyperinsulinaemia increases insulin action in vivo in white adipose tissue but not in muscles. Biochem J. 1990;272(1):255–257. doi: 10.1042/bj2720255.
    1. Morita I, Tanimoto K, Akiyama N, et al. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats. Am J Physiol Metab. 2017;312(4):E264–E272. doi: 10.1152/ajpendo.00342.2016.
    1. McGuinness OP, Friedman A, Cherrington AD. Intraportal hyperinsulinemia decreases insulin-stimulated glucose uptake in the dog. Metabolism. 1990;39(2):127–132. doi: 10.1016/0026-0495(90)90064-J.
    1. Fisher SJ, Kahn CR. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest. 2003;111(4):463–468. doi: 10.1172/JCI16426.
    1. Gregory JM, Smith TJ, Slaughter JC, et al. Iatrogenic hyperinsulinemia, not hyperglycemia, drives insulin resistance in type 1 diabetes as revealed by comparison to GCK-MODY (MODY2) Diabetes. 2019;68:1565–1576. doi: 10.2337/db19-0324.
    1. Alemzadeh R, Slonim AE, Zdanowicz MM, Maturo J. Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology. 1993;133(2):705–712. doi: 10.1210/endo.133.2.8344209.
    1. Templeman NM, Flibotte S, Chik JHL, et al. Reduced circulating insulin enhances insulin sensitivity in old mice and extends lifespan. Cell Rep. 2017;20(2):451–463. doi: 10.1016/j.celrep.2017.06.048.
    1. Loves S, Van Groningen L, Filius M, et al. Effects of diazoxide-mediated insulin suppression on glucose and lipid metabolism in nondiabetic obese men. J Clin Endocrinol Metab. 2018;103(6):2346–2353. doi: 10.1210/jc.2018-00161.
    1. Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1992;89(3):782–788. doi: 10.1172/JCI115656.
    1. Shannon C, Merovci A, Xiong J, et al. Effect of chronic hyperglycemia on glucose metabolism in subjects with normal glucose tolerance. Diabetes. 2018;67(12):2507–2517. doi: 10.2337/db18-0439.
    1. Labonte CC, Farsijani S, Marliss EB, et al. Plasma amino acids vs conventional predictors of insulin resistance measured by the hyperinsulinemic clamp. J Endocr Soc. 2017;1(7):861–873. doi: 10.1210/js.2016-1108.
    1. Toth EL, Suthijumroon A, Crockford PM, Ryan EA. Insulin action does not change during the menstrual cycle in normal women. J Clin Endocrinol Metab. 1987;64(1):74–80. doi: 10.1210/jcem-64-1-74.
    1. Pulido JME, Salazar MA. Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle. Arch Med Res. 1999;30(1):19–22. doi: 10.1016/S0188-0128(98)00008-6.
    1. Yki-Jarvinen H. Insulin sensitivity during the menstrual cycle. J Clin Endocrinol Metab. 1984;59(2):350–353. doi: 10.1210/jcem-59-2-350.

Source: PubMed

3
Abonnieren