The Influence of Upper and Lower Extremity Strength on Performance-Based Sarcopenia Assessment Tests

Michael O Harris-Love, Kimberly Benson, Erin Leasure, Bernadette Adams, Valerie McIntosh, Michael O Harris-Love, Kimberly Benson, Erin Leasure, Bernadette Adams, Valerie McIntosh

Abstract

The optimal management of sarcopenia requires appropriate endpoint measures to determine intervention efficacy. While hand grip strength is a predictor of morbidity and mortality, lower extremity strength may be better associated with functional activities in comparison to hand grip strength. The purpose of our study was to examine the comparative association of upper and lower extremity strength with common measures of physical performance in older adults. Thirty community-dwelling men, aged 62.5 ± 9.2 years, completed body composition analysis, quantitative strength testing, and performance-based tests of functional status. Hand grip force values were not significantly associated with knee extensor or flexor torque values (p > 0.05). Hand grip force was only associated with fast gait speed, while knee extensor torque at 60°/s was the only variable significantly associated across all functional outcome measures: customary gait speed, fast gait speed, sit to stand time, and the Physical Performance Test (p < 0.02). Hand grip strength was not a proxy measure of lower extremity strength as assessed in this study. Overall, lower extremity muscle strength values had the strongest associations with participant functional performance. Lower extremity strength testing may provide additional value as an endpoint measure in the assessment and clinical management of sarcopenia.

Keywords: functional status; gait speed; hand grip strength; lower extremity strength; physical performance; sarcopenia; strength assessment.

Conflict of interest statement

Conflicts of Interest: The authors declare no conflict of interest. The funding agencies had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
The 7-Item Physical Performance Test. The Physical Performance Test (PPT-7) is a performance-based functional assessment battery for older adults. The PPT-7 tasks include: (A) writing a sentence, (B) simulated eating, (C) lifting a book (approx. 3.2 kg) and placing it on a shelf (30.5 cm above shoulder level), (D) donning and doffing a jacket, (E) picking up a penny off the floor, (F) completing 360° turn, (G) and walking 15 m.
Figure 2
Figure 2
Matrix scatter plot for strength and physical performance measures (KE, knee extensor; KF, knee flexor; within each cell the solid line is the line of best fit, and the curved dashed lines are the 95% confidence intervals; strength values are scaled to body weight and are unitless; the Physical Performance Test is the seven-item version of the observed performance battery).

References

    1. Carvalho do Nascimento P.R., Poitras S., Bilodeau M. How do we define and measure sarcopenia? Protocol for a systematic review. Syst. Rev. 2018;7:51. doi: 10.1186/s13643-018-0712-y.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.-P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Lauretani F., Russo C.R., Bandinelli S., Bartali B., Cavazzini C., Di Iorio A., Corsi A.M., Rantanen T., Guralnik J.M., Ferrucci L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. Bethesda Md 1985. 2003;95:1851–1860. doi: 10.1152/japplphysiol.00246.2003.
    1. Rogers M.A., Evans W.J. Changes in skeletal muscle with aging: Effects of exercise training. Exerc. Sport Sci. Rev. 1993;21:65–102. doi: 10.1249/00003677-199301000-00003.
    1. Marsh A.P., Rejeski W.J., Espeland M.A., Miller M.E., Church T.S., Fielding R.A., Gill T.M., Guralnik J.M., Newman A.B., Pahor M. LIFE Study Investigators Muscle strength and BMI as predictors of major mobility disability in the Lifestyle Interventions and Independence for Elders pilot (LIFE-P) J. Gerontol. A Biol. Sci. Med. Sci. 2011;66:1376–1383. doi: 10.1093/gerona/glr158.
    1. Xue Q.-L., Walston J.D., Fried L.P., Beamer B.A. Prediction of risk of falling, physical disability, and frailty by rate of decline in grip strength: The women’s health and aging study. Arch. Intern. Med. 2011;171:1119–1121. doi: 10.1001/archinternmed.2011.252.
    1. Musumeci G. Sarcopenia and exercise “The State of the Art”. J. Funct. Morphol. Kinesiol. 2017;2:40. doi: 10.3390/jfmk2040040.
    1. Nicastro H., Zanchi N.E., Luz C.R.D., Lancha A.H. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 2011;44:1070–1079. doi: 10.1590/S0100-879X2011007500125.
    1. Musumeci G. The Use of vibration as physical exercise and therapy. J. Funct. Morphol. Kinesiol. 2017;2:17. doi: 10.3390/jfmk2020017.
    1. Dam T.-T., Peters K.W., Fragala M., Cawthon P.M., Harris T.B., McLean R., Shardell M., Alley D.E., Kenny A., Ferrucci L., et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:584–590. doi: 10.1093/gerona/glu013.
    1. Cooper C., Fielding R., Visser M., Loon L.J., Rolland Y., Orwoll E., Reid K., Boonen S., Dere W., Epstein S., et al. Tools in the assessment of sarcopenia. Calcif. Tissue Int. 2013;93:201–210. doi: 10.1007/s00223-013-9757-z.
    1. Beaudart C., McCloskey E., Bruyère O., Cesari M., Rolland Y., Rizzoli R., Araujo de Carvalho I., Amuthavalli T.J., Bautmans I., Bertière M.-C., et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016;16:170. doi: 10.1186/s12877-016-0349-4.
    1. Yoo J.I., Choi H., Ha Y.C. Mean hand grip strength and cut-off value for sarcopenia in korean adults using KNHANES VI. J. Korean Med. Sci. 2017;32:868–872. doi: 10.3346/jkms.2017.32.5.868.
    1. Fragala M.S., Alley D.E., Shardell M.D., Harris T.B., McLean R.R., Kiel D.P., Cawthon P.M., Dam T.-T.L., Ferrucci L., Guralnik J.M., et al. Comparison of Handgrip to Leg Extension Strength for Predicting Slow Gait Speed in Older Adults. J. Am. Geriatr. Soc. 2016;64:144–150. doi: 10.1111/jgs.13871.
    1. Kwon I.S., Oldaker S., Schrager M., Talbot L.A., Fozard J.L., Metter E.J. Relationship between muscle strength and the time taken to complete a standardized walk-turn-walk test. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2001;56:B398–B404. doi: 10.1093/gerona/56.9.B398.
    1. Martien S., Delecluse C., Boen F., Seghers J., Pelssers J., Van Hoecke A.-S., Van Roie E. Is knee extension strength a better predictor of functional performance than handgrip strength among older adults in three different settings? Arch. Gerontol. Geriatr. 2015;60:252–258. doi: 10.1016/j.archger.2014.11.010.
    1. Brown M., Sinacore D.R., Host H.H. The relationship of strength to function in the older adult. J. Gerontol. Ser. Biol. Sci. Med. Sci. 1995;50:55–59.
    1. Roberts H.C., Denison H.J., Martin H.J., Patel H.P., Syddall H., Cooper C., Sayer A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing. 2011;40:423–429. doi: 10.1093/ageing/afr051.
    1. Harris-Love M.O., Avila N.A., Adams B., Zhou J., Seamon B., Ismail C., Zaidi S.H., Kassner C.A., Liu F., Blackman M.R. The comparative associations of ultrasound and computed tomography estimates of muscle quality with physical performance and metabolic parameters in older men. J. Clin. Med. 2018;7:340. doi: 10.3390/jcm7100340.
    1. Malmstrom T.K., Miller D.K., Herning M.M., Morley J.E. Low appendicular skeletal muscle mass (ASM) with limited mobility and poor health outcomes in middle-aged African Americans. J. Cachexia Sarcopenia Muscle. 2013;4:179–186. doi: 10.1007/s13539-013-0106-x.
    1. Günther C.M., Bürger A., Rickert M., Crispin A., Schulz C.U. Grip strength in healthy Caucasian adults: Reference values. J. Hand Surg. 2008;33:558–565. doi: 10.1016/j.jhsa.2008.01.008.
    1. Harris-Love M.O. Safety and efficacy of submaximal eccentric strength training for a subject with polymyositis. Arthritis Rheum. 2005;53:471–474. doi: 10.1002/art.21185.
    1. Pincivero D., Lephart S., Karunakara R. Reliability and precision of isokinetic strength and muscular endurance for the quadriceps and hamstrings. Int. J. Sports Med. 1997;18:113–117. doi: 10.1055/s-2007-972605.
    1. Harris-Love M.O., Seamon B.A., Gonzales T.I., Hernandez H.J., Pennington D., Hoover B.M. Eccentric exercise program design: A periodization model for rehabilitation applications. Front. Physiol. 2017;8:1–16. doi: 10.3389/fphys.2017.00112.
    1. Bohannon R.W., Andrews A.W., Thomas M.W. Walking speed: Reference values and correlates for older adults. J. Orthop. Sports Phys. Ther. 1996;24:86–90. doi: 10.2519/jospt.1996.24.2.86.
    1. Wolf S.L., Catlin P.A., Gage K., Gurucharri K., Robertson R., Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory Functional Ambulation Profile. Phys. Ther. 1999;79:1122–1133.
    1. Dos Santos L., Cyrino E.S., Antunes M., Santos D.A., Sardinha L.B. Sarcopenia and physical independence in older adults: The independent and synergic role of muscle mass and muscle function. J. Cachexia Sarcopenia Muscle. 2017;8:245–250. doi: 10.1002/jcsm.12160.
    1. Gray M., Glenn J.M., Binns A. Predicting sarcopenia from functional measures among community-dwelling older adults. AGE. 2016;38:22. doi: 10.1007/s11357-016-9887-0.
    1. Bohannon R.W., Bubela D.J., Magasi S.R., Wang Y.-C., Gershon R.C. Sit-to-stand test: Performance and determinants across the age-span. Isokinet. Exerc. Sci. 2010;18:235–240. doi: 10.3233/IES-2010-0389.
    1. Bohannon R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Skills. 2006;103:215–222. doi: 10.2466/pms.103.1.215-222.
    1. Reuben D.B., Siu A.L. An objective measure of physical function of elderly outpatients. The Physical Performance Test. J. Am. Geriatr. Soc. 1990;38:1105–1112. doi: 10.1111/j.1532-5415.1990.tb01373.x.
    1. Lusardi M.M., Pellecchia G.L., Schulman M. Functional performance in community living older adults. J. Geriatr. Phys. Ther. 2003;26:14–22. doi: 10.1519/00139143-200312000-00003.
    1. Field A. Discovering Statistics Using SPSS. Sage; Los Angeles, CA: 2009.
    1. Portney L.G., Watkins M.P. Foundations of Clinical Research: Applications to Practice. Pearson/Prentice Hall; Upper Saddle River, NJ, USA: 2009.
    1. Alonso A.C., Ribeiro S.M., Luna N.M.S., Peterson M.D., Bocalini D.S., Serra M.M., Brech G.C., Greve J.M.D., Garcez-Leme L.E. Association between handgrip strength, balance, and knee flexion/extension strength in older adults. PLoS ONE. 2018;13:e0198185. doi: 10.1371/journal.pone.0198185.
    1. Chan O.Y.A., van Houwelingen A.H., Gussekloo J., Blom J.W., den Elzen W.P.J. Comparison of quadriceps strength and handgrip strength in their association with health outcomes in older adults in primary care. AGE. 2014;36:9714. doi: 10.1007/s11357-014-9714-4.
    1. Yeung S.S.Y., Reijnierse E.M., Trappenburg M.C., Hogrel J.-Y., McPhee J.S., Piasecki M., Sipila S., Salpakoski A., Butler-Browne G., Pääsuke M., et al. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. J. Am. Med. Dir. Assoc. 2018 doi: 10.1016/j.jamda.2018.04.019.
    1. Felicio D.C., Pereira D.S., Assumpção A.M., de Jesus-Moraleida F.R., de Queiroz B.Z., da Silva J.P., de Brito Rosa N.M., Dias J.M.D., Pereira L.S.M. Poor correlation between handgrip strength and isokinetic performance of knee flexor and extensor muscles in community-dwelling elderly women. Geriatr. Gerontol. Int. 2014;14:185–189. doi: 10.1111/ggi.12077.
    1. Jenkins N.D.M., Buckner S.L., Bergstrom H.C., Cochrane K.C., Goldsmith J.A., Housh T.J., Johnson G.O., Schmidt R.J., Cramer J.T. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Exp. Gerontol. 2014;58:47–50. doi: 10.1016/j.exger.2014.07.007.
    1. Bohannon R.W., Magasi S.R., Bubela D.J., Wang Y.-C., Gershon R.C. Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve. 2012;46:555–558. doi: 10.1002/mus.23350.
    1. Samuel D., Rowe P. An investigation of the association between grip strength and hip and knee joint moments in older adults. Arch. Gerontol. Geriatr. 2012;54:357–360. doi: 10.1016/j.archger.2011.03.009.
    1. Sánchez-Rodríguez D., Marco E., Miralles R., Guillén-Solà A., Vázquez-Ibar O., Escalada F., Muniesa J.M. Does gait speed contribute to sarcopenia case-finding in a postacute rehabilitation setting? Arch. Gerontol. Geriatr. 2015;61:176–181. doi: 10.1016/j.archger.2015.05.008.
    1. Bohannon R.W. Association of grip and knee extension strength with walking speed of older women receiving home-care physical therapy. J. Frailty Aging. 2015;4:181–183. doi: 10.14283/jfa.2015.74.
    1. Davenport T.E., Benson K., Baker S., Gracey C., Rakocevic G., McElroy B., Dalakas M., Shrader J.A., Harris-Love M.O. Lower extremity peak force and gait kinematics in individuals with inclusion body myositis. Arthritis Care Res. 2015;67:94–101. doi: 10.1002/acr.22468.
    1. Lee W.-J., Liu L.-K., Peng L.-N., Lin M.-H., Chen L.-K., ILAS Research Group Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: Results from the I-Lan longitudinal aging study. J. Am. Med. Dir. Assoc. 2013;14:528.e1–528.e7. doi: 10.1016/j.jamda.2013.03.019.
    1. Lord S.R., Murray S.M., Chapman K., Munro B., Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2002;57:M539–M543. doi: 10.1093/gerona/57.8.M539.
    1. Netz Y., Ayalon M., Dunsky A., Alexander N. “The multiple-sit-to-stand” field test for older adults: What does it measure? Gerontology. 2004;50:121–126. doi: 10.1159/000076769.
    1. Jaric S. Muscle strength testing—Use of normalisation for body size. Sports Med. 2002;32:615–631. doi: 10.2165/00007256-200232100-00002.
    1. Fleming T.R., DeMets D.L. Surrogate end points in clinical trials: Are we being misled? Ann. Intern. Med. 1996;125:605–613. doi: 10.7326/0003-4819-125-7-199610010-00011.
    1. Hsu J.Y., Kennedy E.H., Roy J.A., Stephens-Shields A.J., Small D.S., Joffe M.M. Surrogate markers for time-varying treatments and outcomes. Clin. Trials. 2015;12:309–316. doi: 10.1177/1740774515583500.
    1. Falcon L., Harris-Love M.O. Sarcopenia and the new ICD-10-CM code: Screening, staging, and diagnosis considerations. Fed. Pract. 2017;34:24–32. doi: 10.13140/RG.2.2.11364.88960.
    1. Tieland M., Verdijk L.B., de Groot L.C.P.G.M., van Loon L.J.C. Handgrip strength does not represent an appropriate measure to evaluate changes in muscle strength during an exercise intervention program in frail older people. Int. J. Sport Nutr. Exerc. MeTable. 2015;25:27–36. doi: 10.1123/ijsnem.2013-0123.
    1. Cawthon P.M., Fox K.M., Gandra S.R., Delmonico M.J., Chiou C.-F., Anthony M.S., Sewall A., Goodpaster B., Satterfield S., Cummings S.R. For the Health, Aging and Body Composition Study Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J. Am. Geriatr. Soc. 2009;57:1411–1419. doi: 10.1111/j.1532-5415.2009.02366.x.
    1. Rolland Y., Czerwinski S., Abellan Van Kan G., Morley J.E., Cesari M., Onder G., Woo J., Baumgartner R., Pillard F., Boirie Y., et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging. 2008;12:433–450. doi: 10.1007/BF02982704.

Source: PubMed

3
Abonnieren