Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare

Kyeonghye Guk, Gaon Han, Jaewoo Lim, Keunwon Jeong, Taejoon Kang, Eun-Kyung Lim, Juyeon Jung, Kyeonghye Guk, Gaon Han, Jaewoo Lim, Keunwon Jeong, Taejoon Kang, Eun-Kyung Lim, Juyeon Jung

Abstract

Wearable devices are becoming widespread in a wide range of applications, from healthcare to biomedical monitoring systems, which enable continuous measurement of critical biomarkers for medical diagnostics, physiological health monitoring and evaluation. Especially as the elderly population grows globally, various chronic and acute diseases become increasingly important, and the medical industry is changing dramatically due to the need for point-of-care (POC) diagnosis and real-time monitoring of long-term health conditions. Wearable devices have evolved gradually in the form of accessories, integrated clothing, body attachments and body inserts. Over the past few decades, the tremendous development of electronics, biocompatible materials and nanomaterials has resulted in the development of implantable devices that enable the diagnosis and prognosis through small sensors and biomedical devices, and greatly improve the quality and efficacy of medical services. This article summarizes the wearable devices that have been developed to date, and provides a review of their clinical applications. We will also discuss the technical barriers and challenges in the development of wearable devices, and discuss future prospects on wearable biosensors for prevention, personalized medicine and real-time health monitoring.

Keywords: attachable devices; biosensor; implantable devices; personal health; physiological signals; point-of-care; portable devices; real-time monitoring; wearable devices.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Industrial wearable technologies. (A) Evolution of wearable medical devices (B) Application of wearable devices in the healthcare and biomedical monitoring systems. Reproduced with permission from Hwang, I.; et al. Multifunctional smart skin adhesive patches for advanced health care; Wiley, 2018 [9] and Yao, H.; et al. A contact lens with embedded sensor for monitoring tear glucose level; Elsevier, 2011 [10].
Figure 2
Figure 2
Portable medical and healthcare devices worn on body parts.
Figure 3
Figure 3
Stretchable ultrasonic device to identify and capture arterial blood-pressure waveforms. The high-performance 1–3 composite with piezoelectric microrods embedded in an epoxy matrix suppresses shear vibration modes and improves ultrasonic penetration into the skin. The wearable device can monitor peripheral vessel hemodynamics at different locations, for example, to sites of the brachial, radial, femoral or dorsalis pedis arteries. Reproduced with permission from Wang, C.; et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device; Springer Nature, 2018 [61].
Figure 4
Figure 4
Flexible and stretchable sensing platforms. (A) Optical images of patch consisting of a humidity, glucose, pH, tremor, heater and temperature sensor. The diabetes patch is laminated on the human skin and is connected to a portable electrochemical analyzer with external devices via Bluetooth. Sweat glucose concentrations measured by the diabetes patch (red circles) and a commercial glucose assay kit (red dots) are well matched. In addition, changes in the sweat glucose concentration are well correlated with those of the blood glucose concentration. (B) The transparent and stretchable integrated platform of temperature and strain sensors shows the simultaneous responses to temperature of human skin during muscle movements or drinking of hot water when the integrated sensor platform was placed on the neck of a male subject. Reproduced with permission from Lee, H.; et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy; Springer Nature, 2016 [76], and Trung, T.Q.; et al. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics; Wiley, 2016 [79].
Figure 5
Figure 5
Examples of smart contact lens for detecting glucose. Schematic diagrams of the measurement setup. Continuous monitoring of the reflected power in response to various glucose concentrations (0–50 mM) versus time measured using the optical powermeter. Reproduced with permission from Elsherif, M.; et al. Wearable contact lens biosensors for continuous glucose monitoring using smartphones; American Chemical Society, 2018 [87].
Figure 6
Figure 6
Schematic of implantable devices. (A) Tattoo-based glucose detection platform. (B) Photograph of an e-tattoo incorporating two electrocardiogram (ECG) electrodes, two hydration sensors and an RTD, all in filamentary serpentine (FS) layout. Synchronously measured ECG under skin indentation. (C) Schematic illustration shows direct hydrogel ink writing. The packing of Pluronic F127-DA micelles in the ink leads to a physically crosslinked hydrogel after printing; photoinitiator allows postphotocrosslinking of the living structures after printing; engineered bacterial cells are programmed to sense the signaling chemicals. 3D printed living tattoo is printed as a tree-like pattern on a thin elastomer layer and adhered to human skin. Reproduced with permission from Bandodkar, A.J.; et al. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study; American Chemical Society, 2015 [98], Liu, X.; et al. 3D printing of living responsive materials and devices; Wiley, 2018 [101] and Wang, Y.; et al. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts; Springer Nature, 2018 [106].
Figure 7
Figure 7
Overview of ingestible pill sensor system.

References

    1. Wearable Sensors Market Worth $2.86 Billion by 2025 | CAGR: 38.8% [(accessed on 19 October 2018)]; Available online: .
    1. Pantelopoulos A., Bourbakis N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Manand Cybern. Part C (Appl. Rev.) 2010;40:1–12. doi: 10.1109/TSMCC.2009.2032660.
    1. Chan M., Esteve D., Fourniols J.Y., Escriba C., Campo E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012;56:137–156.
    1. Patel S., Park H., Bonato P., Chan L., Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012;9:1–17.
    1. Kim J., Campbell A.S., de Ávila B.E., Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019;37:389–406. doi: 10.1038/s41587-019-0045-y.
    1. Zhu X., Liu W., Shuang S., Nair M., Li C.-Z. Intelligent tattoos, patches, and other wearable biosensors. In: Narayan R.J., editor. Medical Biosensors for Point of Care (poc) Applications. Woodhead Publishing; Duxford, UK: 2017. pp. 133–150.
    1. Khan Y., Ostfeld A.E., Lochner C.M., Pierre A., Arias A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016;28:4373–4395. doi: 10.1002/adma.201504366.
    1. Bandodkar A.J., Wang J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014;32:363–371. doi: 10.1016/j.tibtech.2014.04.005.
    1. Hwang I., Kim H.N., Seon G.M., Lee S.H., Kang M., Yi H., Bae W.G., Kwak M.K., Jeong H.E. Multifunctional smart skin adhesive patches for advanced health care. Adv. Healthc. Mater. 2018;7:1800275. doi: 10.1002/adhm.201800275.
    1. Yao H., Shum A.J., Cowan M., Lähdesmäki I., Parviz B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011;26:3290–3296. doi: 10.1016/j.bios.2010.12.042.
    1. Jeffrey K., Parsonnet V. 1960–1985 a quarter century of medical and industrial innovation. Circulation. 1998;97:1978–1991. doi: 10.1161/01.CIR.97.19.1978.
    1. Gura M.T. Considerations in patients with cardiac implantable electronic devices at end of life. AACN Adv. Crit. Care. 2015;26:356–363. doi: 10.1097/NCI.0000000000000111.
    1. Choi S., Lee H., Ghaffari R., Hyeon T., Kim D.H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016;28:4203–4218. doi: 10.1002/adma.201504150.
    1. Gui H., Liu J. Latest progresses in developing wearable monitoring and therapy systems for managing chronic diseases. arXiv. 2018:1–30.1802.01747
    1. Kamisalic A., Fister I., Jr., Turkanovic M., Karakatic S. Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors. 2018;18:1714. doi: 10.3390/s18061714.
    1. Jiang H., Chen X., Zhang S., Zhang X., Kong W., Zhang T. Software for wearable devices: Challenges and opportunities; Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference; Taichung, Taiwan. 1–5 July 2015; pp. 592–597.
    1. Wearable/Portable Health Monitoring System. [(accessed on 19 October 2018)]; Available online: .
    1. Seneviratne S., Hu Y., Nguyen T., Lan G., Khalifa S., Thilakarathna K., Hassan M., Seneviratne A. A survey of wearable devices and challenges. IEEE Commun. Surv. Tutor. 2017;19:2573–2620. doi: 10.1109/COMST.2017.2731979.
    1. Khattar R.S., Swales J.D., Banfield A., Dore C., Senior R., Lahiri A. Prediction of coronary and cerebrovascular morbidity and mortality by direct continuous ambulatory blood pressure monitoring in essential hypertension. Circulation. 1999;100:1071–1076. doi: 10.1161/01.CIR.100.10.1071.
    1. Lee S.-S., Son I.-H., Choi J.-G., Nam D.-H., Hong Y.-S., Lee W.-B. Estimated blood pressure algorithm for a wrist-wearable pulsimeter using hall device. J. Korean Phys. Soc. 2011;58:349–352. doi: 10.3938/jkps.58.349.
    1. Hsu Y.-P., Young D.J. Skin-surface-coupled personal health monitoring system; Proceedings of the 2013 IEEE SENSORS; Baltimore, MD, USA. 4–6 November 2013; pp. 1–4.
    1. Hwang S., Lee S. Wristband-type wearable health devices to measure construction workers’ physical demands. Automat. Constr. 2017;83:330–340. doi: 10.1016/j.autcon.2017.06.003.
    1. Imai Y., Komoriya Y., Yoshifuji K., Miyashita K., Hyodo Y., Ishikawa T. Wearable motion tolerant ppg sensor for instant heart rate in daily activity; Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies; Porto, Portugal. 21–23 February 2017; Porto, Portugal: SCITEPRESS-Science and Technology; 2017. pp. 126–133.
    1. Vashist S.K. Non-invasive glucose monitoring technology in diabetes management: A review. Anal. Chim. Acta. 2012;750:16–27. doi: 10.1016/j.aca.2012.03.043.
    1. Glennon T., O’Quigley C., McCaul M., Matzeu G., Beirne S., Wallace G.G., Stroiescu F., O’Mahoney N., White P., Diamond D. ‘Sweatch’: A wearable platform for harvesting and analysing sweat sodium content. Electroanalysis. 2016;28:1283–1289. doi: 10.1002/elan.201600106.
    1. Lopez-Blanco R., Velasco M.A., Mendez-Guerrero A., Romero J.P., Del Castillo M.D., Serrano J.I., Rocon E., Benito-Leon J. Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J. Neurol. Sci. 2019;401:37–42. doi: 10.1016/j.jns.2019.04.011.
    1. Tison G.H., Sanchez J.M., Ballinger B., Singh A., Olgin J.E., Pletcher M.J., Vittinghoff E., Lee E.S., Fan S.M., Gladstone R.A., et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 2018;3:409–416. doi: 10.1001/jamacardio.2018.0136.
    1. Head-Mounted Display-Wikipedia. [(accessed on 19 October 2018)]; Available online: .
    1. Constant N., Douglas-Prawl O., Johnson S., Mankodiya K. Pulse-glasses: An unobtrusive, wearable HR monitor with internet-of-things functionality; Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks; Cambridge, MA, USA. 9–12 June 2015; pp. 1–5.
    1. Sempionatto J.R., Nakagawa T., Pavinatto A., Mensah S.T., Imani S., Mercier P., Wang J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip. 2017;17:1834–1842. doi: 10.1039/C7LC00192D.
    1. Barnwell A. Recon Jet Smartglasses Make you Feel Like Robocop. [(accessed on 19 October 2018)]; Available online: .
    1. Arakawa T., Kuroki Y., Nitta H., Chouhan P., Toma K., Sawada S., Takeuchi S., Sekita T., Akiyoshi K., Minakuchi S., et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosens. Bioelectron. 2016;84:106–111. doi: 10.1016/j.bios.2015.12.014.
    1. Kim J., Imani S., de Araujo W.R., Warchall J., Valdes-Ramirez G., Paixao T.R., Mercier P.P., Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015;74:1061–1068. doi: 10.1016/j.bios.2015.07.039.
    1. Kim J., Valdes-Ramirez G., Bandodkar A.J., Jia W., Martinez A.G., Ramirez J., Mercier P., Wang J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst. 2014;139:1632–1636. doi: 10.1039/C3AN02359A.
    1. Yetisen A.K., Martinez-Hurtado J.L., Unal B., Khademhosseini A., Butt H. Wearables in medicine. Adv. Mater. 2018;30:1706910. doi: 10.1002/adma.201706910.
    1. Liu X., Lillehoj P.B. Embroidered electrochemical sensors for biomolecular detection. Lab Chip. 2016;16:2093–2098. doi: 10.1039/C6LC00307A.
    1. E-Textiles-Wikipedia. [(accessed on 19 October 2018)]; Available online: .
    1. Pacelli M., Loriga G., Taccini N., Paradiso R. Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions; Proceedings of the 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors; Cambridge, MA, USA. 4–6 September 2006; pp. 1–4.
    1. Liu X., Tang T.C., Tham E., Yuk H., Lin S., Lu T.K., Zhao X. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. USA. 2017;114:2200–2205. doi: 10.1073/pnas.1618307114.
    1. Paradiso R., Loriga G., Taccini N. A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed. 2005;9:337–344. doi: 10.1109/TITB.2005.854512.
    1. Sibinski M., Jakubowska M., Sloma M. Flexible temperature sensors on fibers. Sensors. 2010;10:7934–7946. doi: 10.3390/s100907934.
    1. Villar R., Beltrame T., Hughson R.L. Validation of the hexoskin wearable vest during lying, sitting, standing, and walking activities. Appl. Physiol. Nutr. Metab. 2015;40:1019–1024. doi: 10.1139/apnm-2015-0140.
    1. Jung P.-G., Oh S., Lim G., Kong K. A mobile motion capture system based on inertial sensors and smart shoes; Proceedings of the 2013 IEEE International Conference on Robotics and Automation; Karlsruhe, Germany. 6–10 May 2013; pp. 692–697.
    1. Lee S.I., Park E., Huang A., Mortazavi B., Garst J.H., Jahanforouz N., Espinal M., Siero T., Pollack S., Afridi M., et al. Objectively quantifying walking ability in degenerative spinal disorder patients using sensor equipped smart shoes. Med. Eng. Phys. 2016;38:442–449. doi: 10.1016/j.medengphy.2016.02.004.
    1. Mishra R.K., Hubble L.J., Martin A., Kumar R., Barfidokht A., Kim J., Musameh M.M., Kyratzis I.L., Wang J. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens. 2017;2:553–561. doi: 10.1021/acssensors.7b00051.
    1. Oura Ring. [(accessed on 19 October 2018)]; Available online: .
    1. Motiv Ring. [(accessed on 19 October 2018)]; Available online: .
    1. Ear-o-Smart. [(accessed on 19 October 2018)]; Available online: .
    1. Bellabeat. [(accessed on 19 October 2018)]; Available online: .
    1. Nakamura Y., Arakawa Y., Kanehira T., Fujiwara M., Yasumoto K. SenStick: Comprehensive sensing platform with an ultra tiny all-in-one sensor board for IoT research. J. Sens. 2017;2017:6308302. doi: 10.1155/2017/6308302.
    1. Belty. [(accessed on 19 October 2018)]; Available online: .
    1. Welt. [(accessed on 19 October 2018)]; Available online: .
    1. Omegawave. [(accessed on 19 October 2018)]; Available online: .
    1. Nazari G., Bobos P., MacDermid J.C., Sinden K.E., Richardson J., Tang A. Psychometric properties of the zephyr bioharness device: A systematic review. BMC Sports Sci. Med. Rehabil. 2018;10:1–8. doi: 10.1186/s13102-018-0094-4.
    1. Kim J.H., Roberge R., Powell J.B., Shafer A.B., Jon Williams W. Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the zephyr bioharness. Int. J. Sports Med. 2013;34:497–501. doi: 10.1055/s-0032-1327661.
    1. Kenry, Yeo J.C., Lim C.T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2016;2:16043. doi: 10.1038/micronano.2016.43.
    1. Liu Y., Pharr M., Salvatore G.A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11:9614–9635. doi: 10.1021/acsnano.7b04898.
    1. Technology That Is Flexible, Sticky, and Smart=Wearable Patches. [(accessed on 19 October 2018)]; Available online: .
    1. Noh S., Yoon C., Hun E., Yoon H.N., Chung T.J., Par K.S., Kim H.C. Ferroelectret film-based patch-type sensor for continuous blood pressure monitoring. Electron. Lett. 2014;50:143–144. doi: 10.1049/el.2013.3715.
    1. Luo N., Dai W., Li C., Zhou Z., Lu L., Poon C.C.Y., Chen S.-C., Zhang Y., Zhao N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016;26:1178–1187. doi: 10.1002/adfm.201504560.
    1. Wang C., Li X., Hu H., Zhang L., Huang Z., Lin M., Zhang Z., Yin Z., Huang B., Gong H., et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018;2:687–695. doi: 10.1038/s41551-018-0287-x.
    1. Yang T., Jiang X., Zhong Y., Zhao X., Lin S., Li J., Li X., Xu J., Li Z., Zhu H. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2017;2:967–974. doi: 10.1021/acssensors.7b00230.
    1. Xin Y., Liu T., Sun H., Xu Y., Zhu J., Qian C., Lin T. Recent progress on the wearable devices based on piezoelectric sensors. Ferroelectrics. 2018;531:102–113. doi: 10.1080/00150193.2018.1497411.
    1. Park D.Y., Joe D.J., Kim D.H., Park H., Han J.H., Jeong C.K., Park H., Park J.G., Joung B., Lee K.J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017;29:1702308. doi: 10.1002/adma.201702308.
    1. Kim J., Kim N., Kwon M., Lee J. Attachable pulse sensors integrated with inorganic optoelectronic devices for monitoring heart rates at various body locations. ACS Appl. Mater. Interfaces. 2017;9:25700–25705. doi: 10.1021/acsami.7b05264.
    1. Chen L.Y., Tee B.C., Chortos A.L., Schwartz G., Tse V., Lipomi D.J., Wong H.S., McConnell M.V., Bao Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014;5:5028. doi: 10.1038/ncomms6028.
    1. Zhang J., Zhou L.J., Zhang H.M., Zhao Z.X., Dong S.L., Wei S., Zhao J., Wang Z.L., Guo B., Hu P.A. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale. 2018;10:7387–7395. doi: 10.1039/C7NR09149D.
    1. Sonner Z., Wilder E., Heikenfeld J., Kasting G., Beyette F., Swaile D., Sherman F., Joyce J., Hagen J., Kelley-Loughnane N., et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics. 2015;9:031301. doi: 10.1063/1.4921039.
    1. Huang X., Liu Y., Chen K., Shin W.J., Lu C.-J., Kong G.-W., Patnaik D., Lee S.H., Cortes J.F., Rogers J.A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small. 2014;10:3083–3090. doi: 10.1002/smll.201400483.
    1. Pervasive Sensing for Athletic Training. [(accessed on 19 October 2018)]; Available online: .
    1. Anastasova S., Crewther B., Bembnowicz P., Curto V., Ip H.M., Rosa B., Yang G.Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 2017;93:139–145. doi: 10.1016/j.bios.2016.09.038.
    1. Alizadeh A., Burns A., Lenigk R., Gettings R., Ashe J., Porter A., McCaul M., Barrett R., Diamond D., White P., et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip. 2018;18:2632–2641. doi: 10.1039/C8LC00510A.
    1. Oh S.Y., Hong S.Y., Jeong Y.R., Yun J., Park H., Jin S.W., Lee G., Oh J.H., Lee H., Lee S.S., et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces. 2018;10:13729–13740. doi: 10.1021/acsami.8b03342.
    1. Kim J., Sempionatto J.R., Imani S., Hartel M.C., Barfidokht A., Tang G., Campbell A.S., Mercier P.P., Wang J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 2018;5:1800880. doi: 10.1002/advs.201800880.
    1. Paranjape M., Garra J., Brida S., Schneider T., White R., Currie J. A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sens. Actuators A Phys. 2003;104:195–204. doi: 10.1016/S0924-4247(03)00049-9.
    1. Lee H., Choi T.K., Lee Y.B., Cho H.R., Ghaffari R., Wang L., Choi H.J., Chung T.D., Lu N., Hyeon T., Choi S.H., et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016;11:566–572. doi: 10.1038/nnano.2016.38.
    1. Cho E., Mohammadifar M., Choi S. A single-use, self-powered, paper-based sensor patch for detection of exercise-induced hypoglycemia. Micromachines. 2017;8:265.
    1. Hauke A., Simmers P., Ojha Y.R., Cameron B.D., Ballweg R., Zhang T., Twine N., Brothers M., Gomez E., Heikenfeld J. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip. 2018;18:3750–3759. doi: 10.1039/C8LC01082J.
    1. Trung T.Q., Ramasundaram S., Hwang B.U., Lee N.E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016;28:502–509. doi: 10.1002/adma.201504441.
    1. Arora N., Martins D., Ruggerio D., Tousimis E., Swistel A.J., Osborne M.P., Simmons R.M. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 2008;196:523–526. doi: 10.1016/j.amjsurg.2008.06.015.
    1. Kennedy D.A., Lee T., Seely D. A comparative review of thermography as a breast cancer screening technique. Integr. Cancer Ther. 2009;8:9–16. doi: 10.1177/1534735408326171.
    1. Webb R.C., Bonifas A.P., Behnaz A., Zhang Y., Yu K.J., Cheng H., Shi M., Bian Z., Liu Z., Kim Y.S., et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013;12:938–944. doi: 10.1038/nmat3755.
    1. Gao L., Zhang Y., Malyarchuk V., Jia L., Jang K.I., Webb R.C., Fu H., Shi Y., Zhou G., Shi L., et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 2014;5:4938. doi: 10.1038/ncomms5938.
    1. Yoon S., Sim J.K., Cho Y.H. A flexible and wearable human stress monitoring patch. Sci. Rep. 2016;6:23468. doi: 10.1038/srep23468.
    1. Alexeev V.L., Das S., Finegold D.N., Asher S.A. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 2004;50:2353–2360. doi: 10.1373/clinchem.2004.039701.
    1. March W., Lazzaro D., Rastogi S. Fluorescent measurement in the non-invasive contact lens glucose sensor. Diabetes Technol. Ther. 2006;8:312–317. doi: 10.1089/dia.2006.8.312.
    1. Elsherif M., Hassan M.U., Yetisen A.K., Butt H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano. 2018;12:5452–5462. doi: 10.1021/acsnano.8b00829.
    1. Thomas N.L., Lähdesmäki I., Parviz B.A. A contact lens with an integrated lactate sensor. Sens. Actuators B Chem. 2012;162:128–134. doi: 10.1016/j.snb.2011.12.049.
    1. Kiourti A., Psathas K.A., Nikita K.S. Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges. Bioelectromagnetics. 2014;35:1–15. doi: 10.1002/bem.21813.
    1. Koh A., Kang D., Xue Y., Lee S., Pielak R.M., Kim J., Hwang T., Min S., Banks A., Bastien P., et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016;8:366ra165. doi: 10.1126/scitranslmed.aaf2593.
    1. Park J., Kim J., Kim S.Y., Cheong W.H., Jang J., Park Y.G., Na K., Kim Y.T., Heo J.H., Lee C.Y., et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018;4:eaap9841. doi: 10.1126/sciadv.aap9841.
    1. Silverman B.G., Gross T.P., Kaczmarek R.G., Hamilton P., Hamburger S. The epidemiology of pacemaker implantation in the United States. Public Health Rep. 1995;110:42–46.
    1. Gilbert F., Ovadia D. Deep brain stimulation in the media: Over-optimistic portrayals call for a new strategy involving journalists and scientists in ethical debates. Front. Integr. Neurosci. 2011;5:16. doi: 10.3389/fnint.2011.00016.
    1. Waln O., Jimenez-Shahed J. Rechargeable deep brain stimulation implantable pulse generators in movement disorders: Patient satisfaction and conversion parameters. Neuromodulation Technol. Neural Interface. 2014;17:425–430. doi: 10.1111/ner.12115.
    1. Connolly S.J., Kerr C.R., Gent M., Roberts R.S., Yusuf S., Gillis A.M., Sami M.H., Talajic M., Tang A.S.L., Klein G.J., et al. Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular cause. N. Engl. J. Med. 2000;342:1385–1391. doi: 10.1056/NEJM200005113421902.
    1. Jia W., Bandodkar A.J., Valdes-Ramirez G., Windmiller J.R., Yang Z., Ramirez J., Chan G., Wang J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013;85:6553–6560. doi: 10.1021/ac401573r.
    1. Guinovart T., Bandodkar A.J., Windmiller J.R., Andrade F.J., Wang J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst. 2013;138:7031–7038. doi: 10.1039/c3an01672b.
    1. Bandodkar A.J., Jia W., Yardimci C., Wang X., Ramirez J., Wang J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015;87:394–398. doi: 10.1021/ac504300n.
    1. Kim J., Jeerapan I., Imani S.C., Cho T.N., Bandodkar A., Cinti S., Mercier P.P., Wang J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016;1:1011–1019. doi: 10.1021/acssensors.6b00356.
    1. Mannoor M.S., Tao H., Clayton J.D., Sengupta A., Kaplan D.L., Naik R.R., Verma N., Omenetto F.G., McAlpine M.C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012;3:763. doi: 10.1038/ncomms1767.
    1. Liu X., Yuk H., Lin S., Parada G.A., Tang T.C., Tham E., de la Fuente-Nunez C., Lu T.K., Zhao X. 3d printing of living responsive materials and devices. Adv. Mater. 2018;30:1704821. doi: 10.1002/adma.201704821.
    1. Vega K., Jiang N., Liu X., Kan V., Barry N., Maes P., Yetisen A., Paradiso J. The dermal abyss: Interfacing with the skin by tattooing biosensors; Proceedings of the 2017 ACM International Symposium on Wearable Computers; Maui, HI, USA. 11–15 September 2017; pp. 138–145.
    1. Smartpill™ Motility Testing System. [(accessed on 19 October 2018)]; Available online: .
    1. Chai P.R., Rosen R.K., Boyer E.W. Ingestible biosensors for real-time medical adherence monitoring: Mytmed; Proceedings of the 2016 49th Hawaii International Conference on System Sciences; Koloa, HI, USA. 5–8 January 2016; pp. 3416–3423.
    1. U.S. FDA Accepts First Digital Medicine New Drug Application for Otsuka and Proteus Digital Health. [(accessed on 19 October 2018)]; Available online: .
    1. Wang Y., Qiu Y., Ameri S.K., Jang H., Dai Z., Huang Y., Lu H. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flex. Electron. 2018;2:6. doi: 10.1038/s41528-017-0019-4.
    1. Kang S.K., Koo J., Lee Y.K., Rogers J.A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 2018;51:988–998. doi: 10.1021/acs.accounts.7b00548.
    1. Cha G.D., Kang D., Lee J., Kim D.H. Bioresorbable electronic implants: History, materials, fabrication, devices, and clinical applications. Adv. Healthc. Mater. 2019 doi: 10.1002/adhm.201801660.
    1. Tao H., Kainerstorfer J.M., Siebert S.M., Pritchard E.M., Sassaroli A., Panilaitis B.J.B., Brenckle M.A., Amsden J.J., Levitt J., Fantini S., et al. Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. USA. 2012;109:19584–19589. doi: 10.1073/pnas.1209056109.
    1. Tao H., Hwang S.W., Marelli B., An B., Moreau J.E., Yang M., Brenckle M.A., Kim S., Kaplan D.L., Rogers J.A., et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. USA. 2014;111:17385–17389. doi: 10.1073/pnas.1407743111.
    1. Son D., Lee J., Lee D.J., Ghaffari R., Yun S., Kim S.J., Lee J.E., Cho H.R., Yoon S., Yang S., et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano. 2015;9:5937–5946. doi: 10.1021/acsnano.5b00651.
    1. Kang S.K., Murphy R.K., Hwang S.W., Lee S.M., Harburg D.V., Krueger N.A., Shin J., Gamble P., Cheng H., Yu S., et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71–76. doi: 10.1038/nature16492.
    1. Kalantar-Zadeh K., Ha N., Ou J.Z., Berean K.J. Ingestible sensors. ACS Sens. 2017;2:468–483. doi: 10.1021/acssensors.7b00045.
    1. Haghi M., Thurow K., Stoll R. Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthc. Inform. Res. 2017;23:4–15. doi: 10.4258/hir.2017.23.1.4.
    1. Koydemir H.C., Ozcan A. Wearable and implantable sensors for biomedical applications. Annu. Rev. Anal. Chem. 2018;11:127–146. doi: 10.1146/annurev-anchem-061417-125956.
    1. Tomasic I., Tomasic N., Trobec R., Krpan M., Kelava T. Continuous remote monitoring of COPD patients-justification and explanation of the requirements and a survey of the available technologies. Med. Biol. Eng. Comput. 2018;56:547–569. doi: 10.1007/s11517-018-1798-z.
    1. Kenzen Patch. [(accessed on 19 October 2018)]; Available online: .

Source: PubMed

3
Abonnieren