Study protocol subacromial impingement syndrome: the identification of pathophysiologic mechanisms (SISTIM)

Pieter Bas de Witte, Jochem Nagels, Ewoud R A van Arkel, Cornelis P J Visser, Rob G H H Nelissen, Jurriaan H de Groot, Pieter Bas de Witte, Jochem Nagels, Ewoud R A van Arkel, Cornelis P J Visser, Rob G H H Nelissen, Jurriaan H de Groot

Abstract

Background: The subacromial impingement syndrome (SIS) is the most common diagnosed disorder of the shoulder in primary health care, but its aetiology is unclear. Conservative treatment regimes focus at reduction of subacromial inflammatory reactions or pathologic scapulohumeral motion patterns (intrinsic aetiology). Long-lasting symptoms are often treated with surgery, which is focused at enlarging the subacromial space by resection of the anterior part of the acromion (based on extrinsic aetiology). Despite that acromionplasty is in the top-10 of orthopaedic surgical procedures, there is no consensus on its indications and reported results are variable (successful in 48-90%). We hypothesize that the aetiology of SIS, i.e. an increase in subacromial pressure or decrease of subacromial space, is multi-factorial. SIS can be the consequence of pathologic scapulohumeral motion patterns leading to humerus cranialisation, anatomical variations of the scapula and the humerus (e.g. hooked acromion), a subacromial inflammatory reaction (e.g. due to overuse or micro-trauma), or adjoining pathology (e.g. osteoarthritis in the acromion-clavicular-joint with subacromial osteophytes).We believe patients should be treated according to their predominant etiological mechanism(s). Therefore, the objective of our study is to identify and discriminate etiological mechanisms occurring in SIS patients, in order to develop tailored diagnostic and therapeutic strategies.

Methods: In this cross-sectional descriptive study, applied clinical and experimental methods to identify intrinsic and extrinsic etiologic mechanisms comprise: MRI-arthrography (eligibility criteria, cuff status, 3D-segmented bony contours); 3D-motion tracking (scapulohumeral rhythm, arm range of motion, dynamic subacromial volume assessment by combining the 3D bony contours and 3D-kinematics); EMG (adductor co-activation) and dynamometry instrumented shoulder radiographs during arm tasks (force and muscle activation controlled acromiohumeral translation assessments); Clinical phenotyping (Constant Score, DASH, WORC, and SF-36 scores).

Discussion: By relating anatomic properties, kinematics and muscle dynamics to subacromial volume, we expect to identify one or more predominant pathophysiological mechanisms in every SIS patient. These differences in underlying mechanisms are a reflection of the variations in symptoms, clinical scores and outcomes reported in literature. More insight in these mechanisms is necessary in order to optimize future diagnostic and treatment strategies for patients with SIS symptoms.

Trial registration: Dutch Trial Registry (Nederlands Trial Register) NTR2283.

Figures

Figure 1
Figure 1
A. Schematic anatomy of a healthy glenohumeral joint and subacromial space. B. Schematic anatomy of a shoulder joint with the presence of several etiologic mechanisms for Subacromial Impingement Syndrome. In theory, impingement ("a disbalance between acromial space and the space needed for subacromial structures") can be caused by 1) A dynamically reduced subacromial space due to a pathologic pattern of arm-shoulder movements (e.g. scapular dyskinesia), resulting in relative cranialisation of the humerus with respect to the scapula/acromion, or 2) A more statically reduced subacromial space, due to 2a) structural anatomic variations (e.g. a hooked acromion), eventually in combination with altered arm-scapula motion patterns; 2b) A subacromial inflammatory reaction (e.g. caused by micro-trauma or overuse) causing subacromial oedema, fibrosis and tendinosis; 2c) Encroachment of subacromial tissues by an adjoining pathology or structures other than the acromion (e.g. acromioclavicular (AC)-joint osteoarthritis and subacromial osteophytes, calcifying tendinitis, and coracoid impingement).
Figure 2
Figure 2
Set-up for EMG-recorded isometric abduction and adduction force tasks. Subjects are positioned in front of the radiographic plate, in standing position with the concerning arm in external rotation at his/her side (i.e. hand in frontal plane), enabling the use of this set-up during concomitant acquirement of standard shoulder radiographs. The arm is attached to a 1-dimensional force transducer at the wrist, enabling subject specific force tasks, visual feedback, and equal task force magnitude for abduction and adduction tasks.
Figure 3
Figure 3
Experimental setup for isometric arm-shoulder force tasks in 24 directions. The subject has the arm in a splint, which is connected to a force transducer. Subjects must bring the arm force driven red cursor into the blue target area, which indicates force direction (n = 24 directions) and force magnitude. The exerted force, perpendicular to the humerus long axis, is recorded together with EMG to measure the activity of 10 individual shoulder muscles.
Figure 4
Figure 4
Schematic outline for relating outcome measures to pathophysiological mechanisms. We expect to identify one or more of the hypothesized etiological mechanisms in each SIS patient. These mechanisms might be related to the reported variations in SIS symptoms, course, and treatment outcome. (MRI = Magnetic Resonance Imaging, X-ray & EMG task = radiographs during EMG recorded abduction and adduction tasks for measurements of acromiohumeral distance, and FoB = 3D kinematics with Flock of Birds system).

References

    1. Bigliani LU, Levine WN. Subacromial impingement syndrome. J Bone Joint Surg Am. 1997;79:1854–1868.
    1. Codman EA. The shoulder, rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. Boston: privately printed; 1934.
    1. Koester MC, George MS, Kuhn JE. Shoulder impingement syndrome. Am J Med. 2005;118:452–455. doi: 10.1016/j.amjmed.2005.01.040.
    1. Nordt WE III, Garretson RB III, Plotkin E. The measurement of subacromial contact pressure in patients with impingement syndrome. Arthroscopy. 1999;15:121–125. doi: 10.1053/ar.1999.v15.015012.
    1. Steenbrink F, de Groot JH, Veeger HE, Meskers CG, van de Sande MA, Rozing PM. Pathological muscle activation patterns in patients with massive rotator cuff tears, with and without subacromial anaesthetics. Man Ther. 2006;11:231–237. doi: 10.1016/j.math.2006.07.004.
    1. Michener LA, McClure PW, Karduna AR. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin Biomech (Bristol, Avon) 2003;18:369–379. doi: 10.1016/S0268-0033(03)00047-0.
    1. Chipchase LS, O'Connor DA, Costi JJ, Krishnan J. Shoulder impingement syndrome: preoperative health status. J Shoulder Elbow Surg. 2000;9:12–15. doi: 10.1016/S1058-2746(00)90003-X.
    1. Neer CS. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 1972;54:41–50.
    1. Neer CS. Impingement lesions. Clin Orthop Relat Res. 1983;173:70–77.
    1. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276–291.
    1. Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome. A study using Moire topographic analysis. Clin Orthop Relat Res. 1992. pp. 191–199.
    1. Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29:574–583.
    1. Hebert LJ, Moffet H, McFadyen BJ, Dionne CE. Scapular behavior in shoulder impingement syndrome. Arch Phys Med Rehabil. 2002;83:60–69. doi: 10.1053/apmr.2002.27471.
    1. Bigliani LU, Morrison DU, April EW. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;10:228.
    1. Epstein RE, Schweitzer ME, Frieman BG, Fenlin JM Jr, Mitchell DG. Hooked acromion: prevalence on MR images of painful shoulders. Radiology. 1993;187:479–481.
    1. Hirano M, Ide J, Takagi K. Acromial shapes and extension of rotator cuff tears: magnetic resonance imaging evaluation. J Shoulder Elbow Surg. 2002;11:576–578. doi: 10.1067/mse.2002.127097.
    1. Jacobson SR, Speer KP, Moor JT, Janda DH, Saddemi SR, MacDonald PB. et al.Reliability of radiographic assessment of acromial morphology. J Shoulder Elbow Surg. 1995;4:449–453. doi: 10.1016/S1058-2746(05)80037-0.
    1. Morrison DS. The clinical significance of variation in acromial morphology. Orthop Trans. 1987;11:234.
    1. Bright AS, Torpey B, Magid D, Codd T, McFarland EG. Reliability of radiographic evaluation for acromial morphology. Skeletal Radiol. 1997;26:718–721. doi: 10.1007/s002560050317.
    1. Zuckerman JD, Kummer FJ, Cuomo F, Greller M. Interobserver reliability of acromial morphology classification: an anatomic study. J Shoulder Elbow Surg. 1997;6:286–287. doi: 10.1016/S1058-2746(97)90017-3.
    1. Burkhead WZ, Burkhart SS, Gerber Symposium C. The rotator cuff: Debridement versus repair - Part I. 1995. pp. 262–271.
    1. Meskers CG, de Groot JH, Arwert HJ, Rozendaal LA, Rozing PM. Reliability of force direction dependent EMG parameters of shoulder muscles for clinical measurements. Clin Biomech (Bristol, Avon) 2004;19:913–920. doi: 10.1016/j.clinbiomech.2004.05.012.
    1. Coderre TJ, Katz J, Vaccarino AL, Melzack R. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain. 1993;52:259–285. doi: 10.1016/0304-3959(93)90161-H.
    1. Deutsch A, Altchek DW, Schwartz E, Otis JC, Warren RF. Radiologic measurement of superior displacement of the humeral head in the impingement syndrome. J Shoulder Elbow Surg. 1996;5:186–193. doi: 10.1016/S1058-2746(05)80004-7.
    1. Paletta GA Jr, Warner JJ, Warren RF, Deutsch A, Altchek DW. Shoulder kinematics with two-plane x-ray evaluation in patients with anterior instability or rotator cuff tearing. J Shoulder Elbow Surg. 1997;6:516–527. doi: 10.1016/S1058-2746(97)90084-7.
    1. Yamaguchi K, Sher JS, Andersen WK, Garretson R, Uribe JW, Hechtman K. et al.Glenohumeral motion in patients with rotator cuff tears: a comparison of asymptomatic and symptomatic shoulders. J Shoulder Elbow Surg. 2000;9:6–11. doi: 10.1016/S1058-2746(00)90002-8.
    1. Graichen H, Hinterwimmer S, Eisenhart-Rothe R, Vogl T, Englmeier KH, Eckstein F. Effect of abducting and adducting muscle activity on glenohumeral translation, scapular kinematics and subacromial space width in vivo. J Biomech. 2005;38:755–760. doi: 10.1016/j.jbiomech.2004.05.020.
    1. Mayerhoefer ME, Breitenseher MJ, Wurnig C, Roposch A. Shoulder impingement: relationship of clinical symptoms and imaging criteria. Clin J Sport Med. 2009;19:83–89. doi: 10.1097/JSM.0b013e318198e2e3.
    1. Uhthoff HK, Sano H. Pathology of failure of the rotator cuff tendon. Orthop Clin North Am. 1997;28:31–41. doi: 10.1016/S0030-5898(05)70262-5.
    1. Wang JC, Horner G, Brown ED, Shapiro MS. The relationship between acromial morphology and conservative treatment of patients with impingement syndrome. Orthopedics. 2000;23:557–559.
    1. Morrison DS, Frogameni AD, Woodworth P. Non-operative treatment of subacromial impingement syndrome. J Bone Joint Surg Am. 1997;79:732–737.
    1. Altchek DW, Warren RF, Wickiewicz TL, Skyhar MJ, Ortiz G, Schwartz E. Arthroscopic acromioplasty. Technique and results. J Bone Joint Surg Am. 1990;72:1198–1207.
    1. Beaufils P. the Cuff. Paris: Elzevier; 1997. Introduction to nonruptured and noncalcifying rotator cuff tendinopathies; pp. 187–191.
    1. Ellman H, Kay SP. Arthroscopic subacromial decompression for chronic impingement. Two- to five-year results. J Bone Joint Surg Br. 1991;73:395–398.
    1. Sachs RA, Stone ML, Devine S. Open vs. arthroscopic acromioplasty: a prospective, randomized study. Arthroscopy. 1994;10:248–254. doi: 10.1016/S0749-8063(05)80106-9.
    1. Van Holsbeeck E, DeRycke J, Declercq G, Martens M, Verstreken J, Fabry G. Subacromial impingement: open versus arthroscopic decompression. Arthroscopy. 1992;8:173–178. doi: 10.1016/0749-8063(92)90032-7.
    1. Kartus J, Kartus C, Rostgard-Christensen L, Sernert N, Read J, Perko M. Long-term clinical and ultrasound evaluation after arthroscopic acromioplasty in patients with partial rotator cuff tears. Arthroscopy. 2006;22:44–49. doi: 10.1016/j.arthro.2005.07.027.
    1. Chambler AF, Pitsillides AA, Emery RJ. Acromial spur formation in patients with rotator cuff tears. J Shoulder Elbow Surg. 2003;12:314–321. doi: 10.1016/S1058-2746(03)00030-2.
    1. Anderson K, Bowen MK. Spur reformation after arthroscopic acromioplasty. Arthroscopy. 1999;15:788–791. doi: 10.1016/S0749-8063(99)70018-6.
    1. Henkus HE, de Witte PB, Nelissen RG, Brand R, van Arkel ER. Bursectomy compared with acromioplasty in the management of subacromial impingement syndrome: a prospective randomised study. J Bone Joint Surg Br. 2009;91:504–510. doi: 10.1302/0301-620X.91B4.21442.
    1. Brox JI, Staff PH, Ljunggren AE, Brevik JI. Arthroscopic surgery compared with supervised exercises in patients with rotator cuff disease (stage II impingement syndrome) BMJ. 1993;307:899–903. doi: 10.1136/bmj.307.6909.899.
    1. Budoff JE, Rodin D, Ochiai D, Nirschl RP. Arthroscopic rotator cuff debridement without decompression for the treatment of tendinosis. Arthroscopy. 2005;21:1081–1089. doi: 10.1016/j.arthro.2005.05.019.
    1. Goldberg BA, Lippitt SB, Matsen FA III. Improvement in comfort and function after cuff repair without acromioplasty. Clin Orthop Relat Res. 2001;390:142–150.
    1. Dorrestijn O, Stevens M, Winters JC, van der MK, Diercks RL. Conservative or surgical treatment for subacromial impingement syndrome? A systematic review. J Shoulder Elbow Surg. 2009;18:652–660. doi: 10.1016/j.jse.2009.01.010.
    1. McFarland EG, Selhi HS, Keyurapan E. Clinical evaluation of impingement: what to do and what works. J Bone Joint Surg Am. 2006;88:432–441.
    1. Gruber G, Bernhardt GA, Clar H, Zacherl M, Glehr M, Wurnig C. Measurement of the acromiohumeral interval on standardized anteroposterior radiographs: a prospective study of observer variability. J Shoulder Elbow Surg. 2010;19:10–13. doi: 10.1016/j.jse.2009.04.010.
    1. Graichen H, Stammberger T, Bonel H, Wiedemann E, Englmeier KH, Reiser M. et al.Three-dimensional analysis of shoulder girdle and supraspinatus motion patterns in patients with impingement syndrome. J Orthop Res. 2001;19:1192–1198. doi: 10.1016/S0736-0266(01)00035-3.
    1. Speed CA, Hazleman BL. Calcific tendinitis of the shoulder. N Engl J Med. 1999;340:1582–1584. doi: 10.1056/NEJM199905203402011.
    1. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8:599–605. doi: 10.1016/S1058-2746(99)90097-6.
    1. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.
    1. de Groot JH, van de Sande MA, Meskers CG, Rozing PM. Pathological Teres Major activation in patients with massive rotator cuff tears alters with pain relief and/or salvage surgery transfer. Clin Biomech (Bristol, Avon) 2006;21(Suppl 1):S27–S32.
    1. Graichen H, Bonel H, Stammberger T, Haubner M, Rohrer H, Englmeier KH. et al.Three-dimensional analysis of the width of the subacromial space in healthy subjects and patients with impingement syndrome. AJR Am J Roentgenol. 1999;172:1081–1086.
    1. Hinterwimmer S, Eisenhart-Rothe R, Siebert M, Putz R, Eckstein F, Vogl T. et al.Influence of adducting and abducting muscle forces on the subacromial space width. Med Sci Sports Exerc. 2003;35:2055–2059. doi: 10.1249/01.MSS.0000099089.49700.53.
    1. Steenbrink F, Meskers CG, Nelissen RG, de Groot JH. The relation between increased deltoid activation and adductor muscle activation due to glenohumeral cuff tears. J Biomech. 2010;43:2049–2054. doi: 10.1016/j.jbiomech.2010.04.012.
    1. van de Sande MA, Rozing PM. Proximal migration can be measured accurately on standardized anteroposterior shoulder radiographs. Clin Orthop Relat Res. 2006;443:260–265. doi: 10.1097/01.blo.0000196043.34789.73.
    1. Nagels J, Verweij J, Stokdijk M, Rozing PM. Reliability of proximal migration measurements in shoulder arthroplasty. J Shoulder Elbow Surg. 2008;17:241–247. doi: 10.1016/j.jse.2007.07.011.
    1. Steenbrink F, de Groot JH, Veeger HE, van der Helm FC, Rozing PM. Glenohumeral stability in simulated rotator cuff tears. J Biomech. 2009;42:1740–1745. doi: 10.1016/j.jbiomech.2009.04.011.
    1. Steenbrink F, Nelissen RG, Meskers CG, van de Sande MA, Rozing PM, de Groot JH. Teres major muscle activation relates to clinical outcome in tendon transfer surgery. Clin Biomech (Bristol, Avon) 2010;25:187–193. doi: 10.1016/j.clinbiomech.2009.11.001.
    1. Steenbrink F, Meskers CG, Nelissen RG, de Groot JH. The relation between increased deltoid activation and adductor muscle activation due to glenohumeral cuff tears. J Biomech. 2010;43:2049–2054. doi: 10.1016/j.jbiomech.2010.04.012.
    1. de Witte PB, van der Zwaal P, Visch W, Schut J, Nagels J, Nelissen RGHH, Arm ADductor activation with arm ABduction in healthy subjects and rotator cuff tear patients - Design of a new measuring instrument - Hum Mov Sci. 2011. in press .
    1. Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31:93–96.
    1. Krekel PR. Proceedings of Simulation and Visualization: 2-3 March 2006; Magdeburg. Erlangen: SCS Publishing House; 2006. Interactive simulation and comparative visualisation of the bone-determined range of motion of the human shoulder; pp. 275–288.
    1. Krekel PR, Vochteloo AJ, Bloem RM, Nelissen RG. Femoroacetabular impingement and its implications on range of motion: a case report. J Med Case Reports. 2011;5:143. doi: 10.1186/1752-1947-5-143.
    1. van der Helm FC. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech. 1994;27:527–550. doi: 10.1016/0021-9290(94)90064-7.
    1. Wright RW, Baumgarten KM. Shoulder outcomes measures. J Am Acad Orthop Surg. 2010;18:436–444.
    1. Brazier JE, Harper R, Jones NM, O'Cathain A, Thomas KJ, Usherwood T. et al.Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ. 1992;305:160–164. doi: 10.1136/bmj.305.6846.160.
    1. Weinmann J, Petrie KJ, Moss-Morris R, Horne R. The illness perception questionnaire: a new method for assessing the cognitive representation of illness. Psychol Health. 1996;11:114–129.
    1. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG) Am J Ind Med. 1996;29:602–608. doi: 10.1002/(SICI)1097-0274(199606)29:6<602::AID-AJIM4>;2-L.
    1. Constant CR, Gerber C, Emery RJ, Sojbjerg JO, Gohlke F, Boileau P. A review of the Constant score: modifications and guidelines for its use. J Shoulder Elbow Surg. 2008;17:355–361. doi: 10.1016/j.jse.2007.06.022.
    1. Kirkley A, Alvarez C, Griffin S. The development and evaluation of a disease-specific quality-of-life questionnaire for disorders of the rotator cuff: The Western Ontario Rotator Cuff Index. Clin J Sport Med. 2003;13:84–92. doi: 10.1097/00042752-200303000-00004.

Source: PubMed

3
Abonnieren