Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial

Alan K Davis, Frederick S Barrett, Darrick G May, Mary P Cosimano, Nathan D Sepeda, Matthew W Johnson, Patrick H Finan, Roland R Griffiths, Alan K Davis, Frederick S Barrett, Darrick G May, Mary P Cosimano, Nathan D Sepeda, Matthew W Johnson, Patrick H Finan, Roland R Griffiths

Abstract

Importance: Major depressive disorder (MDD) is a substantial public health burden, but current treatments have limited effectiveness and adherence. Recent evidence suggests that 1 or 2 administrations of psilocybin with psychological support produces antidepressant effects in patients with cancer and in those with treatment-resistant depression.

Objective: To investigate the effect of psilocybin therapy in patients with MDD.

Design, setting, and participants: This randomized, waiting list-controlled clinical trial was conducted at the Center for Psychedelic and Consciousness Research at Johns Hopkins Bayview Medical Center in Baltimore, Maryland. Adults aged 21 to 75 years with an MDD diagnosis, not currently using antidepressant medications, and without histories of psychotic disorder, serious suicide attempt, or hospitalization were eligible to participate. Enrollment occurred between August 2017 and April 2019, and the 4-week primary outcome assessments were completed in July 2019. A total of 27 participants were randomized to an immediate treatment condition group (n = 15) or delayed treatment condition group (waiting list control condition; n = 12). Data analysis was conducted from July 1, 2019, to July 31, 2020, and included participants who completed the intervention (evaluable population).

Interventions: Two psilocybin sessions (session 1: 20 mg/70 kg; session 2: 30 mg/70 kg) were given (administered in opaque gelatin capsules with approximately 100 mL of water) in the context of supportive psychotherapy (approximately 11 hours). Participants were randomized to begin treatment immediately or after an 8-week delay.

Main outcomes and measures: The primary outcome, depression severity was assessed with the GRID-Hamilton Depression Rating Scale (GRID-HAMD) scores at baseline (score of ≥17 required for enrollment) and weeks 5 and 8 after enrollment for the delayed treatment group, which corresponded to weeks 1 and 4 after the intervention for the immediate treatment group. Secondary outcomes included the Quick Inventory of Depressive Symptomatology-Self Rated (QIDS-SR).

Results: Of the randomized participants, 24 of 27 (89%) completed the intervention and the week 1 and week 4 postsession assessments. This population had a mean (SD) age of 39.8 (12.2) years, was composed of 16 women (67%), and had a mean (SD) baseline GRID-HAMD score of 22.8 (3.9). The mean (SD) GRID-HAMD scores at weeks 1 and 4 (8.0 [7.1] and 8.5 [5.7]) in the immediate treatment group were statistically significantly lower than the scores at the comparable time points of weeks 5 and 8 (23.8 [5.4] and 23.5 [6.0]) in the delayed treatment group. The effect sizes were large at week 5 (Cohen d = 2.5; 95% CI, 1.4-3.5; P < .001) and week 8 (Cohen d = 2.6; 95% CI, 1.5-3.7; P < .001). The QIDS-SR documented a rapid decrease in mean (SD) depression score from baseline to day 1 after session 1 (16.7 [3.5] vs 6.3 [4.4]; Cohen d = 2.6; 95% CI, 1.8-3.5; P < .001), which remained statistically significantly reduced through the week 4 follow-up (6.0 [5.7]; Cohen d = 2.3; 95% CI, 1.5-3.0; P < .001). In the overall sample, 17 participants (71%) at week 1 and 17 (71%) at week 4 had a clinically significant response to the intervention (≥50% reduction in GRID-HAMD score), and 14 participants (58%) at week 1 and 13 participants (54%) at week 4 were in remission (≤7 GRID-HAMD score).

Conclusions and relevance: Findings suggest that psilocybin with therapy is efficacious in treating MDD, thus extending the results of previous studies of this intervention in patients with cancer and depression and of a nonrandomized study in patients with treatment-resistant depression.

Trial registration: ClinicalTrials.gov Identifier: NCT03181529.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Davis reported being a board member at Source Research Foundation. Dr Johnson reported receiving grants from Heffter Research Institute outside the submitted work and personal fees as a consultant and/or advisory board member from Beckley Psychedelics Ltd, Entheogen Biomedical Corp, Field Trip Psychedelics Inc, Mind Medicine Inc, and Otsuka Pharmaceutical Development & Commercialization Inc. Dr Griffiths reported being a board member at Heffter Research Institute and receiving grants from Heffter Research Institute outside the submitted work. No other disclosures were reported.

Figures

Figure 1.. CONSORT Diagram of Participant Flow
Figure 1.. CONSORT Diagram of Participant Flow
aAfter completing the prescreening questionnaire, people were deemed ineligible if they were currently using antidepressant medication (n = 157); lived outside reasonable commuting distance (n = 161); did not meet criteria for the magnetic resonance imaging scans (n = 99); had a first- or second-degree relative with a diagnosis of schizophrenia spectrum, bipolar I or II, or other psychotic disorder ( = 77); had a recent history of substance use disorder (n = 50); opted out of in-person screening (n = 38); were not in a current depressive episode (n = 37); were more than 25% beyond the upper or lower range of recommended body weight (n = 32); had a medically significant suicide attempt (n = 30); had lifetime hallucinogen use that exceeded the exclusion threshold (n = 30); if major depressive disorder (MDD) was not primary psychiatric diagnosis (n = 18); if they had a medical exclusion (n = 11); had exclusionary use of nonserotonergic psychoactive medication (n = 11); or failed to respond to electroconvulsive therapy during current depressive episode (n = 4). Forty-five people were ineligible for other reasons. bPeople were deemed ineligible during in-person screening if they had a psychiatric condition judged to be incompatible with establishment of rapport or safe exposure to psilocybin (n = 17); did not have confirmed DSM-5 diagnosis of MDD (n = 7); had a recent history of moderate to severe substance use disorder (n = 5); were at high risk for suicidality (n = 3); disagreed with study procedures (n = 3); had a baseline GRID Hamilton Depression Rating Scale score lower than the eligibility threshold of 17 (n = 2); had cardiovascular conditions (n = 2); had lifetime hallucinogen use that exceeded the exclusion threshold (n = 2); were currently taking serotonergic medication (n = 1); or were more than 25% beyond the upper and lower range of recommended body weight (n = 1). cDropped out of the study due to anticipatory anxiety about the upcoming first psilocybin session. dDropped out of study due to sleep difficulties. Sleep difficulties were also reported at screening, and it was not clear whether sleep difficulties were exacerbated by the intervention. eParticipant showed a marked reduction in depression symptoms immediately following the first psilocybin session and chose not to proceed with the intervention.
Figure 2.. Study Timeline From Baseline Assessment…
Figure 2.. Study Timeline From Baseline Assessment and Screening to the 4-Week Postsession-2 Follow-up Visit
GRID-HAMD indicates GRID Hamilton Depression Rating Scale.
Figure 3.. Comparison of GRID Hamilton Depression…
Figure 3.. Comparison of GRID Hamilton Depression Rating Scale (GRID-HAMD) Scores Between the Delayed Treatment and Immediate Treatment Groups
Data points are presented as mean (SD). In the immediate treatment group (n = 13), weeks 5 and 8 correspond to weeks 1 and 4 after the psilocybin session 2. In the delayed treatment group (n = 11), weeks 5 and 8 are prepsilocybin assessments obtained during the delay period. Effect sizes (Cohen d with 95% CI) and P values reflect the results of a 2-sample t test between the 2 groups at week 5 (Cohen d = 2.5; 95% CI, 1.4-3.5; P < .001) and week 8 (Cohen d = 2.6; 95% CI, 1.5-3.7; P < .001).
Figure 4.. Decrease in the GRID Hamilton…
Figure 4.. Decrease in the GRID Hamilton Depression Rating Scale (GRID-HAMD) Scores at Week 1 and Week 4 Postsession-2 Follow-up in the Overall Treatment Sample
The mean (SD) GRID-HAMD score was 22.8 (3.9) at baseline, 8.7 (7.6) at week 1, and 8.9 (7.4) at week 4. Effect sizes (Cohen d with 95% CI) and P values reflect the results of a paired sample t test that compared scores between baseline and week 1 (Cohen d = 2.3; 95% CI, 1.5-3.1; P < .001) and week 4 postsession-2 follow-up (Cohen d = 2.3; 95% CI, 1.5-3.1; P < .001).

References

    1. World Health Organization . Depression fact sheet. World Health Organization. Published December 2019. Accessed January 11, 2020.
    1. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry. 2015;72(4):334-341. doi:10.1001/jamapsychiatry.2014.2502
    1. Hasin DS, Sarvet AL, Meyers JL, et al. . Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry. 2018;75(4):336-346. doi:10.1001/jamapsychiatry.2017.4602
    1. Greenberg PE, Fournier A-A, Sisitsky T, Pike CT, Kessler RC. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. 2015;76(2):155-162. doi:10.4088/JCP.14m09298
    1. Kolovos S, van Tulder MW, Cuijpers P, et al. . The effect of treatment as usual on major depressive disorder: a meta-analysis. J Affect Disord. 2017;210:72-81. doi:10.1016/j.jad.2016.12.013
    1. Morilak DA, Frazer A. Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol. 2004;7(2):193-218. doi:10.1017/S1461145704004080
    1. Gaynes BN, Warden D, Trivedi MH, Wisniewski SR, Fava M, Rush AJ. What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr Serv. 2009;60(11):1439-1445. doi:10.1176/ps.2009.60.11.1439
    1. Nemeroff CB. Prevalence and management of treatment-resistant depression. J Clin Psychiatry. 2007;68(suppl 8):17-25.
    1. Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid-acting antidepressants: is it glutamate inhibition or activation? Pharmacol Ther. 2018;190:148-158. doi:10.1016/j.pharmthera.2018.05.010
    1. Dutta A, McKie S, Deakin JFW. Ketamine and other potential glutamate antidepressants. Psychiatry Res. 2015;225(1-2):1-13. doi:10.1016/j.psychres.2014.10.028
    1. Fond G, Loundou A, Rabu C, et al. . Ketamine administration in depressive disorders: a systematic review and meta-analysis. Psychopharmacology (Berl). 2014;231(18):3663-3676. doi:10.1007/s00213-014-3664-5
    1. Morgan CJA, Curran HV; Independent Scientific Committee on Drugs . Ketamine use: a review. Addiction. 2012;107(1):27-38. doi:10.1111/j.1360-0443.2011.03576.x
    1. Martín-Ruiz R, Puig MV, Celada P, et al. . Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci. 2001;21(24):9856-9866. doi:10.1523/JNEUROSCI.21-24-09856.2001
    1. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11(9):642-651. doi:10.1038/nrn2884
    1. Nichols DE. Psychedelics. Pharmacol Rev. 2016;68(2):264-355. doi:10.1124/pr.115.011478
    1. Griffiths RR, Johnson MW, Carducci MA, et al. . Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016;30(12):1181-1197. doi:10.1177/0269881116675513
    1. Ross S, Bossis A, Guss J, et al. . Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30(12):1165-1180. doi:10.1177/0269881116675512
    1. Carhart-Harris RL, Bolstridge M, Rucker J, et al. . Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3(7):619-627. doi:10.1016/S2215-0366(16)30065-7
    1. Goldberg SB, Pace BT, Nicholas CR, Raison CL, Hutson PR. The experimental effects of psilocybin on symptoms of anxiety and depression: a meta-analysis. Psychiatry Res. 2020;284:112749. doi:10.1016/j.psychres.2020.112749
    1. Gable RS. Toward a comparative overview of dependence potential and acute toxicity of psychoactive substances used nonmedically. Am J Drug Alcohol Abuse. 1993;19(3):263-281. doi:10.3109/00952999309001618
    1. Gable RS. Acute toxic effects of club drugs. J Psychoactive Drugs. 2004;36(3):303-313. doi:10.1080/02791072.2004.10400031
    1. Johnson MW, Griffiths RR, Hendricks PS, Henningfield JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology. 2018;142:143-166. doi:10.1016/j.neuropharm.2018.05.012
    1. Studerus E, Kometer M, Hasler F, Vollenweider FX. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25(11):1434-1452. doi:10.1177/0269881110382466
    1. First MB, Williams JBW, Karg RS, Spitzer RL. Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV). American Psychiatric Association; 2016.
    1. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):56-62. doi:10.1136/jnnp.23.1.56
    1. Williams JBW, Kobak KA, Bech P, et al. . The GRID-HAMD: standardization of the Hamilton Depression Rating Scale. Int Clin Psychopharmacol. 2008;23(3):120-129. doi:10.1097/YIC.0b013e3282f948f5
    1. Wei LJ, Lachin JM. Properties of the urn randomization in clinical trials. Control Clin Trials. 1988;9(4):345-364. doi:10.1016/0197-2456(88)90048-7
    1. Fekadu A, Wooderson S, Donaldson C, et al. . A multidimensional tool to quantify treatment resistance in depression: the Maudsley staging method. J Clin Psychiatry. 2009;70(2):177-184. doi:10.4088/JCP.08m04309
    1. Carey V, Gentleman R. randPack: Randomization routines for clinical trials. R package version 1.32.0. Bioconductor; 2018. Accessed August 1, 2017.
    1. R Foundation . R Project for Statistical Computing. Accessed August 1, 2017.
    1. Johnson M, Richards W, Griffiths R. Human hallucinogen research: guidelines for safety. J Psychopharmacol. 2008;22(6):603-620. doi:10.1177/0269881108093587
    1. Griffiths RR, Richards WA, McCann U, Jesse R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl). 2006;187(3):268-283. doi:10.1007/s00213-006-0457-5
    1. Griffiths RR, Johnson MW, Richards WA, Richards BD, McCann U, Jesse R. Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology (Berl). 2011;218(4):649-665. doi:10.1007/s00213-011-2358-5
    1. First MB, Williams JBW, Benjamin LS, Spitzer RL. Structured Clinical Interview for DSM-5 Screening Personality Questionnaire (SCID-5-SPQ). American Psychiatric Association; 2016.
    1. First MB, Williams JBW, Benjamin LS, Spitzer RL. User’s Guide for the Structured Clinical Interview for DSM-5 Personality Disorders (SCID-5-PD). American Psychiatric Association; 2016.
    1. Morey LC. Personality assessment inventory (PAI). In: Cautin RL, Lilienfeld SO, eds. The Encyclopedia of Clinical Psychology. John Wiley & Sons, Inc; 2015:1-10. doi:10.1002/9781118625392.wbecp284
    1. International Society for CNS Drug Development . GRID-HAMD-17 Structured Interview Guide. ISCDD; 2003.
    1. Zimmerman M, Martinez JH, Young D, Chelminski I, Dalrymple K. Severity classification on the Hamilton depression rating scale. J Affect Disord. 2013;150(2):384-388. doi:10.1016/j.jad.2013.04.028
    1. Rush AJ, Trivedi MH, Ibrahim HM, et al. . The 16-item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol Psychiatry. 2003;54(5):573-583. doi:10.1016/S0006-3223(02)01866-8
    1. Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories-IA and-II in psychiatric outpatients. J Pers Assess. 1996;67(3):588-597. doi:10.1207/s15327752jpa6703_13
    1. Kroenke K, Spitzer RL. The PHQ-9: a new depression diagnostic and severity measure. Psychiatr Ann. 2002;32(9):509-515. doi:10.3928/0048-5713-20020901-06
    1. Posner K, Brent D, Lucas C, et al. . Columbia-Suicide Severity Rating Scale (C-SSRS). Columbia University Medical Center; 2008.
    1. Posner K, Brown GK, Stanley B, et al. . The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168(12):1266-1277. doi:10.1176/appi.ajp.2011.10111704
    1. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1959;32(1):50-55. doi:10.1111/j.2044-8341.1959.tb00467.x
    1. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press; 1983.
    1. Corp IBM. IBM SPSS Statistics for Windows. Version 25. IBM Corp; 2018.
    1. Grob CS, Danforth AL, Chopra GS, et al. . Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry. 2011;68(1):71-78. doi:10.1001/archgenpsychiatry.2010.116
    1. Johnson MW, Garcia-Romeu A, Griffiths RR. Long-term follow-up of psilocybin-facilitated smoking cessation. Am J Drug Alcohol Abuse. 2017;43(1):55-60. doi:10.3109/00952990.2016.1170135
    1. Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa PC, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol. 2015;29(3):289-299. doi:10.1177/0269881114565144
    1. Garcia-Romeu A, Griffiths RR, Johnson MW. Psilocybin-occasioned mystical experiences in the treatment of tobacco addiction. Curr Drug Abuse Rev. 2014;7(3):157-164. doi:10.2174/1874473708666150107121331
    1. Roseman L, Nutt DJ, Carhart-Harris RL. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front Pharmacol. 2018;8:974. doi:10.3389/fphar.2017.00974
    1. Griffiths RR, Johnson MW, Richards WA, et al. . Psilocybin-occasioned mystical-type experience in combination with meditation and other spiritual practices produces enduring positive changes in psychological functioning and in trait measures of prosocial attitudes and behaviors. J Psychopharmacol. 2018;32(1):49-69. doi:10.1177/0269881117731279
    1. Davis AK, Barrett FS, Griffiths RR. Psychological flexibility mediates the relations between acute psychedelic effects and subjective decreases in depression and anxiety. J Contextual Behav Sci. 2020;15:39-45. doi:10.1016/j.jcbs.2019.11.004
    1. Garcia-Romeu A, Davis AK, Erowid F, Erowid E, Griffiths RR, Johnson MW. Cessation and reduction in alcohol consumption and misuse after psychedelic use. J Psychopharmacol. 2019;33(9):1088-1101. doi:10.1177/0269881119845793
    1. Garcia-Romeu A, Davis AK, Erowid E, Erowid F, Griffiths RR, Johnson MW. Persisting reductions in cannabis, opioid, and stimulant misuse after naturalistic psychedelic use: an online survey. Front Psychiatry. 2020;10:955. doi:10.3389/fpsyt.2019.00955
    1. Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10(1):2214. doi:10.1038/s41598-020-59282-y
    1. Rubin A, Yu M. Within-group effect size benchmarks for cognitive–behavioral therapy in the treatment of adult depression. Soc Work Res. 2017;41(3):135-144. doi:10.1093/swr/svx011
    1. Fournier JC, DeRubeis RJ, Hollon SD, et al. . Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA. 2010;303(1):47-53. doi:10.1001/jama.2009.1943
    1. de Maat SM, Dekker J, Schoevers RA, de Jonghe F. Relative efficacy of psychotherapy and combined therapy in the treatment of depression: a meta-analysis. Eur Psychiatry. 2007;22(1):1-8. doi:10.1016/j.eurpsy.2006.10.008
    1. Cuijpers P, van Straten A, Warmerdam L, Andersson G. Psychotherapy versus the combination of psychotherapy and pharmacotherapy in the treatment of depression: a meta-analysis. Depress Anxiety. 2009;26(3):279-288. doi:10.1002/da.20519
    1. Cuijpers P, Sijbrandij M, Koole SL, Andersson G, Beekman AT, Reynolds CF III. Adding psychotherapy to antidepressant medication in depression and anxiety disorders: a meta-analysis. World Psychiatry. 2014;13(1):56-67. doi:10.1002/wps.20089
    1. US Food and Drug Administration . Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. Demonstrating substantial evidence of effectiveness for human drug and biological products. Draft guidance for industry. Published June 1, 2020. Accessed Month date, year.

Source: PubMed

3
Abonnieren