Application of Detecting Circulating Tumor Cells in the Accurate Treatment of Early Stage Lung Adenocarcinoma (CTCs detection)

October 31, 2016 updated by: Deng Bo, MD, Third Military Medical University

Application of Detecting Circulating Tumor Cells in the Accurate Diagnosis and Treatment of Early Stage Lung Adenocarcinoma

In 2015-2016, 224,390 cases were newly diagnosed with lung cancer in USA. Of all the cases, 83% are non-small cell lung cancer (NSCLC). Currently, the 5-year survival rate of NSCLC patients is 21%, and more than 25% of early stage NSCLC patients, who have undergone surgical treatment, will have a relapse or progression.

Circulating tumor cells (CTCs), which shed from the primary tumor into the vasculature or lymphatics, can be regarded as a new prognostic factors of metastatic process. Thus far, CTCs-detection technologies can be divided into epithelial cell adhesion molecule (EpCAM)-based detection methods, e.g., the widely used CellSearch® and Adnatest®,and EpCAM-independent detection methods, e.g., ISET® and ScreenCell®. Herein, the investigators used a newly established approach, i.e., CanPatrolTM to detect CTCs in early stage lung Adenocarcinoma cases.

The investigator aim to explore whether CTCs detection prior to surgery can be contributive to the early diagnosis, or may help to predict the prognosis and guide the treatment strategy of early stage lung Adenocarcinoma.

Study Overview

Study Type

Interventional

Enrollment (Anticipated)

120

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

45 years to 70 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • stage I lung adenocarcinoma

Exclusion Criteria:

  • cases with any new adjuvant treatment prior to surgery

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: IA-CTC-High-enhance
IA lung adenocarcinoma cases with high abundant CTCs prior to operation will undergo lobectomy&lymphadenectomy plus adjuvant chemotherapy. Postoperative CTC monitoring will be conducted.
Lymphadenectomy or lymph node dissection is the surgical removal of one or more groups of lymph nodes. It is almost always performed as part of the surgical management of cancer. In a regional lymph node dissection, some of the lymph nodes in the tumor area are removed; in a radical lymph node dissection, most or all of the lymph nodes in the tumor area are removed.
CanPatrol TM was used to detect CTCs, which is a newly established technology to detect CTCs, containing the following steps: (1) To remove erythrocytes by red blood cell lysis and deplete CD45+ leukocytes in 10ml blood sample using a magnetic bead separation method; (2) To enrich CTCs by 8-μm-diameter-pore calibrated membrane filters; and (3) To identify and characterize CTCs by using RNA-in situ hybridization (ISH), based on the branched DNA (bDNA) signal amplification technology, to detect EMT markers, e.g., cytokeratins(CK) 8, 18 and 19, epithelial cell adhesion molecule (EpCAM), vimentin and twist. The details of classification of CTCs by using CanPatrol TM was depicted in the recently published protocol. Finally, the CTCs were clustered into three subtypes, as per the EMT markers, i.e., epithelial (E-) CTCs, mesenchymal (M-) CTCs and epithelial- mesenchymal (E&M-) CTCs.
Placebo Comparator: IA-CTC-High-controls
IA lung adenocarcinoma cases with high abundant CTCs prior to operation will only undergo lobectomy&lymphadenectomy. Postoperative CTC monitoring will be conducted.
Lymphadenectomy or lymph node dissection is the surgical removal of one or more groups of lymph nodes. It is almost always performed as part of the surgical management of cancer. In a regional lymph node dissection, some of the lymph nodes in the tumor area are removed; in a radical lymph node dissection, most or all of the lymph nodes in the tumor area are removed.
CanPatrol TM was used to detect CTCs, which is a newly established technology to detect CTCs, containing the following steps: (1) To remove erythrocytes by red blood cell lysis and deplete CD45+ leukocytes in 10ml blood sample using a magnetic bead separation method; (2) To enrich CTCs by 8-μm-diameter-pore calibrated membrane filters; and (3) To identify and characterize CTCs by using RNA-in situ hybridization (ISH), based on the branched DNA (bDNA) signal amplification technology, to detect EMT markers, e.g., cytokeratins(CK) 8, 18 and 19, epithelial cell adhesion molecule (EpCAM), vimentin and twist. The details of classification of CTCs by using CanPatrol TM was depicted in the recently published protocol. Finally, the CTCs were clustered into three subtypes, as per the EMT markers, i.e., epithelial (E-) CTCs, mesenchymal (M-) CTCs and epithelial- mesenchymal (E&M-) CTCs.
Placebo Comparator: IA-CTC-low-controls
IA lung adenocarcinoma cases with low abundant CTCs prior to operation will only undergo segmentectomy. Postoperative CTC monitoring will be conducted.
CanPatrol TM was used to detect CTCs, which is a newly established technology to detect CTCs, containing the following steps: (1) To remove erythrocytes by red blood cell lysis and deplete CD45+ leukocytes in 10ml blood sample using a magnetic bead separation method; (2) To enrich CTCs by 8-μm-diameter-pore calibrated membrane filters; and (3) To identify and characterize CTCs by using RNA-in situ hybridization (ISH), based on the branched DNA (bDNA) signal amplification technology, to detect EMT markers, e.g., cytokeratins(CK) 8, 18 and 19, epithelial cell adhesion molecule (EpCAM), vimentin and twist. The details of classification of CTCs by using CanPatrol TM was depicted in the recently published protocol. Finally, the CTCs were clustered into three subtypes, as per the EMT markers, i.e., epithelial (E-) CTCs, mesenchymal (M-) CTCs and epithelial- mesenchymal (E&M-) CTCs.
Active Comparator: IB-CTC-High-enhance
IB lung adenocarcinoma cases with high abundant CTCs prior to operation will undergo lobectomy&lymphadenectomy plus adjuvant chemotherapy. Postoperative CTC monitoring will be conducted.
Lymphadenectomy or lymph node dissection is the surgical removal of one or more groups of lymph nodes. It is almost always performed as part of the surgical management of cancer. In a regional lymph node dissection, some of the lymph nodes in the tumor area are removed; in a radical lymph node dissection, most or all of the lymph nodes in the tumor area are removed.
CanPatrol TM was used to detect CTCs, which is a newly established technology to detect CTCs, containing the following steps: (1) To remove erythrocytes by red blood cell lysis and deplete CD45+ leukocytes in 10ml blood sample using a magnetic bead separation method; (2) To enrich CTCs by 8-μm-diameter-pore calibrated membrane filters; and (3) To identify and characterize CTCs by using RNA-in situ hybridization (ISH), based on the branched DNA (bDNA) signal amplification technology, to detect EMT markers, e.g., cytokeratins(CK) 8, 18 and 19, epithelial cell adhesion molecule (EpCAM), vimentin and twist. The details of classification of CTCs by using CanPatrol TM was depicted in the recently published protocol. Finally, the CTCs were clustered into three subtypes, as per the EMT markers, i.e., epithelial (E-) CTCs, mesenchymal (M-) CTCs and epithelial- mesenchymal (E&M-) CTCs.
Placebo Comparator: IB-CTC-High-controls
IB lung adenocarcinoma cases with high abundant CTCs prior to operation will undergo lobectomy&lymphadenectomy. Postoperative CTC monitoring will be conducted.
Lymphadenectomy or lymph node dissection is the surgical removal of one or more groups of lymph nodes. It is almost always performed as part of the surgical management of cancer. In a regional lymph node dissection, some of the lymph nodes in the tumor area are removed; in a radical lymph node dissection, most or all of the lymph nodes in the tumor area are removed.
CanPatrol TM was used to detect CTCs, which is a newly established technology to detect CTCs, containing the following steps: (1) To remove erythrocytes by red blood cell lysis and deplete CD45+ leukocytes in 10ml blood sample using a magnetic bead separation method; (2) To enrich CTCs by 8-μm-diameter-pore calibrated membrane filters; and (3) To identify and characterize CTCs by using RNA-in situ hybridization (ISH), based on the branched DNA (bDNA) signal amplification technology, to detect EMT markers, e.g., cytokeratins(CK) 8, 18 and 19, epithelial cell adhesion molecule (EpCAM), vimentin and twist. The details of classification of CTCs by using CanPatrol TM was depicted in the recently published protocol. Finally, the CTCs were clustered into three subtypes, as per the EMT markers, i.e., epithelial (E-) CTCs, mesenchymal (M-) CTCs and epithelial- mesenchymal (E&M-) CTCs.
Placebo Comparator: IB-CTC-low-controls
IB lung adenocarcinoma cases with low abundant CTCs prior to operation will undergo lobectomy&lymphadenectomy. Postoperative CTC monitoring will be conducted.
Lymphadenectomy or lymph node dissection is the surgical removal of one or more groups of lymph nodes. It is almost always performed as part of the surgical management of cancer. In a regional lymph node dissection, some of the lymph nodes in the tumor area are removed; in a radical lymph node dissection, most or all of the lymph nodes in the tumor area are removed.
CanPatrol TM was used to detect CTCs, which is a newly established technology to detect CTCs, containing the following steps: (1) To remove erythrocytes by red blood cell lysis and deplete CD45+ leukocytes in 10ml blood sample using a magnetic bead separation method; (2) To enrich CTCs by 8-μm-diameter-pore calibrated membrane filters; and (3) To identify and characterize CTCs by using RNA-in situ hybridization (ISH), based on the branched DNA (bDNA) signal amplification technology, to detect EMT markers, e.g., cytokeratins(CK) 8, 18 and 19, epithelial cell adhesion molecule (EpCAM), vimentin and twist. The details of classification of CTCs by using CanPatrol TM was depicted in the recently published protocol. Finally, the CTCs were clustered into three subtypes, as per the EMT markers, i.e., epithelial (E-) CTCs, mesenchymal (M-) CTCs and epithelial- mesenchymal (E&M-) CTCs.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
Disease free survival
Time Frame: From date of diagnosis until the date of first documented progression or date of cancer related death , whichever came first, assessed up to 60 months
From date of diagnosis until the date of first documented progression or date of cancer related death , whichever came first, assessed up to 60 months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

April 1, 2016

Primary Completion (Anticipated)

December 1, 2019

Study Completion (Anticipated)

December 1, 2019

Study Registration Dates

First Submitted

October 25, 2016

First Submitted That Met QC Criteria

October 30, 2016

First Posted (Estimate)

November 1, 2016

Study Record Updates

Last Update Posted (Estimate)

November 2, 2016

Last Update Submitted That Met QC Criteria

October 31, 2016

Last Verified

October 1, 2016

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Treatment

Clinical Trials on lobectomy

3
Subscribe