HIPEC-Induced Acute Kidney Injury: A Retrospective Clinical Study and Preclinical Model

Lukas F Liesenfeld, Benedikt Wagner, H Christian Hillebrecht, Maik Brune, Christoph Eckert, Johannes Klose, Thomas Schmidt, Markus W Büchler, Martin Schneider, Lukas F Liesenfeld, Benedikt Wagner, H Christian Hillebrecht, Maik Brune, Christoph Eckert, Johannes Klose, Thomas Schmidt, Markus W Büchler, Martin Schneider

Abstract

Background: Hyperthermic intraperitoneal chemotherapy (HIPEC) combined with cytoreductive surgery (CRS) is the treatment of choice for selected patients with peritoneal malignancies. HIPEC is accompanied by moderate-to-high patient morbidity, including acute kidney injury. The significance of nephrotoxic agents such as cisplatin versus hyperthermia in HIPEC-induced nephrotoxicity has not been defined yet.

Patients and methods: A total of 153 patients treated with HIPEC were divided into groups with (AKI+) and without (AKI-) kidney injury. Laboratory parameters and data concerning patient demographics, underlying disease, surgery, complications, and HIPEC were gathered to evaluate risk factors for HIPEC-induced AKI. A preclinical mouse model was applied to assess the significance of cisplatin and hyperthermia in HIPEC-induced AKI, as well as protective effects of the cytoprotective agent amifostine.

Results: AKI occurred in 31.8% of patients undergoing HIPEC. Treatment with cisplatin-containing HIPEC regimens represented a major risk factor for HIPEC-related AKI (p < 0.001). Besides, angiotensin receptor blockers and increased preoperative creatinine and urea levels were independent risk factors for AKI after HIPEC. In a preclinical mouse model, intraperitoneal perfusion with cisplatin induced AKI, whereas hyperthermia alone, or in combination with cisplatin, did not induce or enhance renal injury. Amifostine failed to confer nephroprotective effects in a miniaturized HIPEC model.

Conclusions: AKI is a frequent complication after HIPEC. The risk of renal injury is particularly high in patients treated with cisplatin-containing HIPEC regimens. Hyperthermic perfusion of the abdomen by itself does not seem to induce or aggravate HIPEC-induced renal injury.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
HIPEC-induced acute kidney injury in patients. a Occurrence of AKI after HIPEC regimens containing (CPL+) and not containing (CPL−) cisplatin. CPL cisplatin, DOX doxorubicin, LV leucovorin, MMC mitomycin C, OXA oxaliplatin, TAX taxol, 5-FU 5-fluorouracil. b Staging of patients (n = 45) with HIPEC-induced kidney injuries according to KDIGO classification. c Comparison of urine output and d fluid balance between patients with (AKI+) and without (AKI−) kidney injury after HIPEC on day of operation (0th), 1st, and 2nd POD. Data are expressed as mean ± range. e Quantity of patients diagnosed with HIPEC-induced AKI per postoperative day. *p < 0.05; nsp ≥ 0.05
Fig. 2
Fig. 2
Influence of cisplatin, hyperthermia, and amifostine on HIPEC-induced AKI in a preclinical mouse model. a Plasma levels of creatinine, urea, and cystatin C, 48 h and 72 h after single i.p. injection of cisplatin (20 mg/kg). Data are expressed as mean ± SD; n = 6, *p < 0.05. bd Percentage changes in creatinine (b), urea (c) and cystatin C levels (d), 72 h after i.p. perfusion (90 min) with saline (0.9%; circles) or cisplatin (75 mg/m2 in 2 L/m2 perfusate; triangles), or after single i.p. injection with cisplatin as a positive control (20 mg/kg; black circles, POSctrl). Perfusion was performed under either normothermia (38 °C, open circles, 38C; and open triangles, CPL38C) or under hyperthermic conditions (41–42 °C; gray circles, 42C; and gray triangles, CPL42C). Amifostine (200 mg/kg; diamonds, AF) was injected s.c. 15 min prior to perfusion with cisplatin at 38 °C. Individual animals are expressed as one datapoint each. n = 6 (38C, 42C, CPL42), n = 10 (CPL38, AF); *p < 0.05; nsp ≥ 0.05. e Representative PAS staining revealing histopathological changes in murine kidneys, 72 h after i.p. perfusion with saline at 38 °C (left panels, 38C), saline at 42 °C (middle left panels, 42C), cisplatin (75 mg/m2) at 38 °C (center panels, CPL38C), cisplatin at 42 °C (middle right panels, CPL42C), or cisplatin at 38 °C after amifostine treatment (200 mg/kg s.c.; right panels, AF). Note hyaline casts (#), apoptosis (*), and necrosis (x) of tubular epithelial cells in kidneys of animals perfused with cisplatin (in center and right panels), and regular proximal (>) and distal (<) tubules in kidneys of those treated with saline (left panels). Images in upper panels are taken at 100× magnification and in lower panels at 400× magnification. f, g Histomorphometric scoring of tubular injury quantity (f) and severity (g), 72 h after i.p. perfusion with saline at 38 °C (38C), saline at 42 °C (42C), cisplatin at 38 °C (CPL38C), cisplatin at 42 °C (CPL42C), or cisplatin at 38 °C after amifostine treatment (AF). Data are expressed as mean ± SD, *p < 0.05

References

    1. Neuwirth MG, Alexander HR, Karakousis GC. Then and now: cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC), a historical perspective. J Gastrointest Oncol. 2016;7(1):18–28. doi: 10.3978/j.issn.2078-6891.2015.106.
    1. Coccolini F, Gheza F, Lotti M, et al. Peritoneal carcinomatosis. World J Gastroenterol. 2013;19(41):6979–6994. doi: 10.3748/wjg.v19.i41.6979.
    1. Lu Z, Wang J, Wientjes MG, Au JLS. Intraperitoneal therapy for peritoneal cancer. Futur Oncol. 2010;6(10):1625–1641. doi: 10.2217/fon.10.100.
    1. Kim J, Bhagwandin S, Labow DM. Malignant peritoneal mesothelioma: a review. Ann Transl Med. 2017;5(11):236–236. doi: 10.21037/atm.2017.03.96.
    1. Jayne DG, Fook S, Loi C. Peritoneal carcinomatosis from colorectal cancer. J Br Surg. 2002;3:1545–1550. doi: 10.1046/j.1365-2168.2002.02274.x.
    1. Halkia E, Spiliotis J, Sugarbaker P. Diagnosis and management of peritoneal metastases from ovarian cancer. Gastroenterol Res Pract. 2012;2012:541842. doi: 10.1155/2012/541842.
    1. Kikuchi H, Kamiya K, Hiramatsu Y, et al. Laparoscopic narrow-band imaging for the diagnosis of peritoneal metastasis in gastric cancer. Ann Surg Oncol. 2014;21(12):3954–3962. doi: 10.1245/s10434-014-3781-8.
    1. Rodríguez-Ortiz L, Arjona-Sánchez Á, Rufián-Peña S, et al. Colorectal peritoneal metastases: Optimal management review. World J Gastroenterol. 2019;25(27):3484–3502. doi: 10.3748/wjg.v25.i27.3484.
    1. Ching Ching Teo M, Van Shulyn Chia C, Lim C, Hwei Ching Tan G, Kuang Chia W, Chee Soo K. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in recurrent ovarian cancer with peritoneal metastasis: a prospective registry study on 41 patients. Pleura Peritoneum. 2017;2(4):171–179. doi: 10.1515/pp-2017-0021.
    1. Thomassen I, Van Gestel YR, Van Ramshorst B, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014;134(3):622–628. doi: 10.1002/ijc.28373.
    1. Minsky BD, Mies C, Rich TA, Recht A, Chaffey JT. Potentially curative surgery of colon cancer: patterns of failure and survival. J Clin Oncol. 1988;6(1):106–118. doi: 10.1200/JCO.1988.6.1.106.
    1. Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of North Central Cancer Treatment Group phase III trials N9741 and N9841. J Clin Oncol. 2012;30(3):263–267. doi: 10.1200/JCO.2011.37.1039.
    1. Wei J, Wu ND, Liu BR. Regional but fatal: intraperitoneal metastasis in gastric Cancer. World J Gastroenterol. 2016;22(33):7478–7485. doi: 10.3748/wjg.v22.i33.7478.
    1. van Driel WJ, Koole SN, Sikorska K, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018 doi: 10.1056/NEJMoa1708618.
    1. Gameiro J, Fonseca JA, Neves M, Jorge S, Lopes JA. Acute kidney injury in major abdominal surgery: incidence, risk factors, pathogenesis and outcomes. Ann Intensive Care. 2018 doi: 10.1186/s13613-018-0369-7.
    1. Glehen O, Osinsky D, Cotte E, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003 doi: 10.1245/ASO.2003.01.018.
    1. Verwaal VJ, Van Tinteren H, Ruth SV, Zoetmulder FAN. Toxicity of cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy. J Surg Oncol. 2004;8585:61–6761. doi: 10.1002/jso.20013.
    1. Kusamura S, Baratti D, Younan R, et al. Impact of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy on systemic toxicity. Ann Surg Oncol. 2007;14(9):2550–2558. doi: 10.1245/s10434-007-9429-1.
    1. Canda AE, Sokmen S, Terzi C, et al. Complications and toxicities after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2013;20(4):1082–1087. doi: 10.1245/s10434-012-2853-x.
    1. Hakeam HA, Breakiet M, Azzam A, Nadeem A, Amin T. The incidence of cisplatin nephrotoxicity post hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery. Ren Fail. 2014;36(10):1486–1491. doi: 10.3109/0886022X.2014.949758.
    1. Arjona-Sánchez A, Cadenas-Febres A, Cabrera-Bermon J, et al. Assessment of RIFLE and AKIN criteria to define acute renal dysfunction for HIPEC procedures for ovarian and non ovarian peritoneal malignances. Eur J Surg Oncol. 2016;42(6):869–876. doi: 10.1016/j.ejso.2015.12.016.
    1. Bouhadjari N, Gabato W, Calabrese D, Msika S, Keita H. Hyperthermic intraperitoneal chemotherapy with cisplatin: amifostine prevents acute severe renal impairment. Eur J Surg Oncol. 2016;42(2):219–223. doi: 10.1016/j.ejso.2015.07.016.
    1. Sin EIL, Chia CS, Tan GHC, Soo KC, Teo MCC. Acute kidney injury in ovarian cancer patients undergoing cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy. Int J Hyperth. 2017;33(6):690–695. doi: 10.1080/02656736.2017.1293304.
    1. Naffouje SA, Tulla KA, Chorley R, Armstrong N, Salti GI. Acute kidney injury increases the rate of major morbidities in cytoreductive surgery and HIPEC. Ann Med Surg. 2018;35:163–168. doi: 10.1016/j.amsu.2018.09.036.
    1. Ye J, Ren Y, Wei Z, et al. Nephrotoxicity and long-term survival investigations for patients with peritoneal carcinomatosis using hyperthermic intraperitoneal chemotherapy with cisplatin: A retrospective cohort study. Surg Oncol. 2018;27(3):456–461. doi: 10.1016/j.suronc.2018.05.025.
    1. Cata JP, Zavala AM, Van Meter A, et al. Identification of risk factors associated with postoperative acute kidney injury after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: a retrospective study. Int J Hyperth. 2018;34(5):538–544. doi: 10.1080/02656736.2017.1368096.
    1. Angeles MA, Quenet F, Vieille P, et al. EP781 predictive risk factors of acute kidney injury after cytoreductive surgery and cisplatin-based hyperthermic intraperitoneal chemotherapy for ovarian peritoneal carcinomatosis. Int J Gynecol Cancer. 2019;29:1. doi: 10.1136/ijgc-2019-ESGO.832.
    1. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490–2518. doi: 10.3390/toxins2112490.
    1. Ansaloni L, Coccolini F, Morosi L, et al. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer. 2015 doi: 10.1038/bjc.2014.602.
    1. Ceresoli M, Coccolini F, Ansaloni L. HIPEC and nephrotoxicity: a cisplatin induced effect? Eur J Surg Oncol. 2016;42(6):909–910. doi: 10.1016/j.ejso.2015.08.174.
    1. Liesenfeld LF, Hillebrecht HC, Klose J, Schmidt T, Schneider M. Impact of perfusate concentration on HIPEC efficacy and toxicity in a rodent model. J Surg Res. 2020;253:262–271. doi: 10.1016/j.jss.2020.03.067.
    1. Elias D, Mariani A, Cloutier AS, et al. Modified selection criteria for complete cytoreductive surgery plus HIPEC based on peritoneal cancer index and small bowel involvement for peritoneal carcinomatosis of colorectal origin. Eur J Surg Oncol. 2014;40(11):1467–1473. doi: 10.1016/j.ejso.2014.06.006.
    1. Sugarbaker PH. Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. Semin Surg Oncol. 1998;14(3):254–261. doi: 10.1002/(SICI)1098-2388(199804/05)14:3<254::AID-SSU10>;2-U.
    1. Sugarbaker PH. Technical handbook for prevention and treatment of peritoneal surface malignancy. 4th edn. The Ludman Company; 2005.
    1. Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–4272. doi: 10.1093/ndt/gfs375.
    1. Miyawaki Y, Ueki M, Ueno M, Asaga T, Tokuda M. D-Allose ameliorates cisplatin-induced nephrotoxicity in mice. Tohoku J Exp Med. 2012;228:215–221. doi: 10.1620/tjem.228.215.Correspondence.
    1. Megyesi J, Safirstein RL, Price PM. Induction of p21 WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest. 1998;101(4):777–782. doi: 10.1172/JCI1497.
    1. Ramesh G, Reeves WB. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest. 2002;110(6):835–842. doi: 10.1172/JCI200215606.Introduction.
    1. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5:1315–1316. doi: 10.1097/JTO.0b013e3181ec173d.
    1. Quenet F, Elias D, Roca L, et al. A UNICANCER phase III trial of hyperthermic intra-peritoneal chemotherapy (HIPEC) for colorectal peritoneal carcinomatosis (PC): PRODIGE 7. J Clin Oncol. 2018;36:LBA3503. doi: 10.1200/JCO.2018.36.18_suppl.LBA3503.
    1. Malfroy S, Wallet F, Maucort-Boulch D, et al. Complications after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis: Risk factors for ICU admission and morbidity prognostic score. Surg Oncol. 2016;25(1):6–15. doi: 10.1016/j.suronc.2015.11.003.
    1. Desantis M, Bernard JL, Casanova V, et al. Morbidity, mortality, and oncological outcomes of 401 consecutive cytoreductive procedures with hyperthermic intraperitoneal chemotherapy (HIPEC) Langenbeck’s Arch Surg. 2015;400(1):37–48. doi: 10.1007/s00423-014-1253-z.
    1. Ihemelandu CU, McQuellon R, Shen P, Stewart JH, Votanopoulos K, Levine EA. Predicting postoperative morbidity following cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (CS+HIPEC) with preoperative FACT-C (Functional Assessment of Cancer Therapy) and patient-rated performance status. Ann Surg Oncol. 2013;20:3519–3526. doi: 10.1245/s10434-013-3049-8.
    1. Haslinger M, Francescutti V, Attwood K, et al. A contemporary analysis of morbidity and outcomes in cytoreduction/hyperthermic intraperitoneal chemoperfusion. Cancer Med. 2013;2(3):334–342. doi: 10.1002/cam4.80.
    1. Peres LAB, da Cunha AD. Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol orgão Of Soc Bras e Latino-Americana Nefrol. 2013;35(4):332–340.
    1. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011. doi: 10.3390/ijms20123011.
    1. O’Connor ME, Kirwan CJ, Pearse RM, Prowle JR. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 2016;42(4):521–530. doi: 10.1007/s00134-015-4157-7.
    1. Coca SG. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers after acute kidney injury: friend, foe, or acquaintance? Am J Nephrol. 2020;51(4):263–265. doi: 10.1159/000505896.
    1. Haghighi M, Nematbakhsh M, Talebi A, et al. The role of angiotensin II receptor 1 (AT1) blockade in cisplatin-induced nephrotoxicity in rats: gender-related differences. Ren Fail. 2012;34(8):1046–1051. doi: 10.3109/0886022X.2012.700886.
    1. Saleh S, Ain-Shoka AA, El-Demerdash E, Khalef MM. Protective effects of the angiotensin ii receptor blocker losartan on cisplatin-induced kidney injury. Chemotherapy. 2009;55(6):399–406. doi: 10.1159/000262453.
    1. Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(4 Suppl):S179–86. doi: 10.1097/CCM.0b013e318169167f.
    1. Colantonio L, Claroni C, Fabrizi L, et al. A randomized trial of goal directed vs standard fluid therapy in cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. J Gastrointest Surg. 2015 doi: 10.1007/s11605-015-2743-1.
    1. Eng OS, Dumitra S, O’Leary M, et al. Association of fluid administration with morbidity in cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. JAMA Surg. 2017;152(12):1156–1160. doi: 10.1001/jamasurg.2017.2865.
    1. Korst A, Boven E, van der Sterre M, Fichtinger-Schepman A, van der Vijgh W. Influence of single and multiple doses of amifostine on the efficacy and the pharmacokinetics of carboplatin in mice. Br J Cancer. 1997;75:1439–1446. doi: 10.1038/bjc.1997.247.
    1. Wills BK, Aks S, Maloney GE, Rhee J, Brand R, Sekosan M. The effect of amifostine, a cytoprotective agent, on paraquat toxicity in mice. J Med Toxicol. 2007;3(1):1–6. doi: 10.1007/BF03161031.
    1. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38(10):1933–1953. doi: 10.1093/clinchem/38.10.1933.

Source: PubMed

3
S'abonner