Sodium Thiosulfate Reduces Acute Kidney Injury in Patients Undergoing Cytoreductive Surgery Plus Hyperthermic Intraperitoneal Chemotherapy with Cisplatin: A Single-Center Observational Study

Annika Kurreck, Felix Gronau, Miguel Enrique Alberto Vilchez, Wiltrud Abels, Philipp Enghard, Andreas Brandl, Roland Francis, Bettina Föhre, Christian Lojewski, Johann Pratschke, Peter Thuss-Patience, Dominik Modest, Beate Rau, Linda Feldbrügge, Annika Kurreck, Felix Gronau, Miguel Enrique Alberto Vilchez, Wiltrud Abels, Philipp Enghard, Andreas Brandl, Roland Francis, Bettina Föhre, Christian Lojewski, Johann Pratschke, Peter Thuss-Patience, Dominik Modest, Beate Rau, Linda Feldbrügge

Abstract

Background: Cytoreductive surgery (CRS) in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) represents a multimodal treatment concept for patients with peritoneal surface malignancies. The use of intraperitoneal cisplatin (CDDP) is associated with a risk of acute kidney injury (AKI). The aim of this study is to evaluate the protective effect of perioperative sodium thiosulfate (STS) administration on kidney function in patients undergoing CRS and CDDP-based HIPEC.

Patients and methods: We retrospectively analyzed clinical data of all patients who underwent CRS and CDDP-based HIPEC at our hospital between March 2017 and August 2020. Patients were stratified according to the use of sodium thiosulfate (STS vs. no STS). We compared kidney function and clinical outcome parameters between both groups and determined risk factors for postoperative AKI on univariate and multivariate analysis. AKI was classified according to acute kidney injury network (AKIN) criteria.

Results: Of 238 patients who underwent CRS and CDDP-based HIPEC, 46 patients received STS and 192 patients did not. There were no significant differences in baseline characteristics. In patients who received STS, a lower incidence (6.5% vs. 30.7%; p = 0.001) and severity of AKI (p = 0.009) were observed. On multivariate analysis, the use of STS (OR 0.089, p = 0.001) remained an independent kidney-protective factor, while arterial hypertension (OR 5.283, p < 0.001) and elevated preoperative urea serum level (OR 5.278, p = 0.032) were predictors for postoperative AKI.

Conclusions: The present data suggest that STS protects patients from AKI caused by CRS and CDDP-based HIPEC. Further prospective studies are needed to validate the benefit of STS among kidney-protective strategies.

© 2021. The Author(s).

Figures

Fig. 1.
Fig. 1.
Consort diagram of analyzed patient cohort. CDDP cisplatin, STS sodium thiosulfate, CR cytoreductive surgery, HIPEC hyperthermic intraperitoneal chemotherapy
Fig. 2.
Fig. 2.
Distribution of tumor entities within the analyzed patient cohort
Fig. 3.
Fig. 3.
Laboratory kidney function parameters before and after CRS and HIPEC. Pre- and postoperative serum levels of creatinine (a), urea (b), and estimated glomerular filtration rate (eGFR, c). STS sodium thiosulfate
Fig. 4.
Fig. 4.
Multivariate analysis of potential risk factors for postoperative acute kidney injury (AKI) following CRS and HIPEC. OR odds ratio (95% confidence interval), BMI body mass index, Preop. preoperative, eGFR estimated glomerular filtration rate

References

    1. Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:256–266. doi: 10.1016/S1470-2045(20)30599-4.
    1. Hettinga JV, Lemstra W, Meijer C, Dam WA, Uges DR, Konings AW, et al. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells. Br J Cancer. 1997;75(12):1735–1743. doi: 10.1038/bjc.1997.297.
    1. Rossi CR, Mocellin S, Pilati P, Foletto M, Quintieri L, Palatini P, et al. Pharmacokinetics of intraperitoneal cisplatin and doxorubicin. Surg Oncol Clin N Am. 2003;12(3):781–794. doi: 10.1016/S1055-3207(03)00030-9.
    1. Cata JP, Zavala AM, Van Meter A, Williams UU, Soliz J, Hernandez M, et al. Identification of risk factors associated with postoperative acute kidney injury after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: a retrospective study. Int J Hyperther. 2018;34(5):538–544. doi: 10.1080/02656736.2017.1368096.
    1. Naffouje SA, Tulla KA, Chorley R, Armstrong N, Salti GI. Acute kidney injury increases the rate of major morbidities in cytoreductive surgery and HIPEC. Ann Med Surg (Lond). 2018;35:163–168. doi: 10.1016/j.amsu.2018.09.036.
    1. Sin EI, Chia CS, Tan GH, Soo KC, Teo MC. Acute kidney injury in ovarian cancer patients undergoing cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy. Int J Hyperth. 2017;33(6):690–695. doi: 10.1080/02656736.2017.1293304.
    1. Hakeam HA, Breakiet M, Azzam A, Nadeem A, Amin T. The incidence of cisplatin nephrotoxicity post hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery. Ren Fail. 2014;36(10):1486–1491. doi: 10.3109/0886022X.2014.949758.
    1. Bakrin N, Bereder JM, Decullier E, Classe JM, Msika S, Lorimier G, et al. Peritoneal carcinomatosis treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for advanced ovarian carcinoma: a French multicentre retrospective cohort study of 566 patients. Eur J Surg Oncol. 2013;39(12):1435–1443. doi: 10.1016/j.ejso.2013.09.030.
    1. Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378(25):2376–2385. doi: 10.1056/NEJMoa1801109.
    1. Freyer DR, Chen L, Krailo MD, Knight K, Villaluna D, Bliss B, et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(1):63–74. doi: 10.1016/S1470-2045(16)30625-8.
    1. Pfeifle CE, Howell SB, Felthouse RD, Woliver TB, Andrews PA, Markman M, et al. High-dose cisplatin with sodium thiosulfate protection. J Clin Oncol. 1985;3(2):237–244. doi: 10.1200/JCO.1985.3.2.237.
    1. Van Driel WJ, Koole SN, Sikorska K, van Leeuwen JHS, Schreuder HW, Hermans RH, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–240. doi: 10.1056/NEJMoa1708618.
    1. Guastalla JP, Vermorken JB, Wils JA, George M, Scotto V, Nooij M, et al. Phase II trial for intraperitoneal cisplatin plus intravenous sodium thiosulphate in advanced ovarian carcinoma patients with minimal residual disease after cisplatin-based chemotherapy—a phase II study of the EORTC Gynaecological Cancer Cooperative Group. Eur J Cancer. 1994;30A(1):45–49. doi: 10.1016/S0959-8049(05)80017-6.
    1. Van Rijswijk RE, Hoekman K, Burger CW, Verheijen RH, Vermorken JB. Experience with intraperitoneal cisplatin and etoposide and i.v. sodium thiosulphate protection in ovarian cancer patients with either pathologically complete response or minimal residual disease. Ann Oncol. 1997;8(12):1235–1241. doi: 10.1023/A:1008296202198.
    1. Laplace N, Kepenekian V, Friggeri A, Vassal O, Ranchon F, Rioufol C, et al. Sodium thiosulfate protects from renal impairement following hyperthermic intraperitoneal chemotherapy (HIPEC) with Cisplatin. Int J Hyperther. 2020;37(1):897–902. doi: 10.1080/02656736.2020.1795277.
    1. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. doi: 10.1186/cc5713.
    1. Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–374. doi: 10.1007/978-1-4613-1247-5_23.
    1. Sugarbaker PH. Management of peritoneal-surface malignancy: the surgeon's role. Langenbecks Arch Surg. 1999;384(6):576–587. doi: 10.1007/s004230050246.
    1. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–213. doi: 10.1097/.
    1. Brandl A, Zielinski CB, Raue W, Pratschke J, Rau B. Peritoneal metastases of rare carcinomas treated with cytoreductive surgery and HIPEC—a single center case series. Ann Med Surg. 2012;2017(22):7–11.
    1. Verwaal VJ, van Ruth S, de Bree E, van Slooten GW, van Tinteren H, Boot H, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21(20):3737–3743. doi: 10.1200/JCO.2003.04.187.
    1. Tilleman TR, Richards WG, Zellos L, Johnson BE, Jaklitsch MT, Mueller J, et al. Extrapleural pneumonectomy followed by intracavitary intraoperative hyperthermic cisplatin with pharmacologic cytoprotection for treatment of malignant pleural mesothelioma: a phase II prospective study. J Thorac Cardiovasc Surg. 2009;138(2):405–411. doi: 10.1016/j.jtcvs.2009.02.046.
    1. Hübner M, Kusamura S, Villeneuve L, Al-Niaimi A, Alyami M, Balonov K, et al. Guidelines for Perioperative Care in Cytoreductive Surgery (CRS) with or without hyperthermic IntraPEritoneal chemotherapy (HIPEC): Enhanced recovery after surgery (ERAS®) Society Recommendations—Part I: preoperative and intraoperative management. Eur J Surg Oncol. 2020;46(12):2292–2310. doi: 10.1016/j.ejso.2020.07.041.
    1. Hübner M, Kusamura S, Villeneuve L, Al-Niaimi A, Alyami M, Balonov K, et al. Guidelines for perioperative care in cytoreductive surgery (CRS) with or without hyperthermic IntraPEritoneal chemotherapy (HIPEC): enhanced recovery after surgery (ERAS®) Society recommendations—Part II: postoperative management and special considerations. Eur J Surg Oncol. 2020;46(12):2311–2323. doi: 10.1016/j.ejso.2020.08.006.
    1. Lu PW, Fields AC, Shabat G, Bleday R, Goldberg JE, Irani J, et al. Cytoreductive surgery and HIPEC in an enhanced recovery after surgery program: a feasibility study. J Surg Res. 2020;247:59–65. doi: 10.1016/j.jss.2019.10.042.
    1. Martin RC, 2nd, Marshall BM, Philips P, Egger M, McMasters KM, Scoggins CR. Enhanced recovery after surgery is safe for cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Am J Surg. 2020;220(6):1428–1432. doi: 10.1016/j.amjsurg.2020.08.041.
    1. Webb C, Day R, Velazco CS, Pockaj BA, Gray RJ, Stucky CC, et al. Implementation of an enhanced recovery after surgery (ERAS) program is associated with improved outcomes in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2020;27(1):303–312. doi: 10.1245/s10434-019-07900-z.
    1. Harned TM, Kalous O, Neuwelt A, Loera J, Ji L, Iovine P, et al. Sodium thiosulfate administered six hours after cisplatin does not compromise antineuroblastoma activity. Clin Cancer Res. 2008;14(2):533–540. doi: 10.1158/1078-0432.CCR-06-2289.
    1. Inoue M, Shimizu C, Shimizu H, Tanizawa O. Neutralizing effect of sodium thiosulfate on antitumor efficacy of cisplatin for human carcinoma xenografts in nude mice. Gynecol Oncol. 1991;40(1):34–37. doi: 10.1016/0090-8258(91)90081-F.
    1. Saito D, Fujii T, Yoshida S, Ohkura H, Oguro Y. Effect of sodium thiosulfate on the antitumor effect and nephrotoxicity of CDDP in human gastric cancer transplanted in nude mice. Gan To Kagaku Ryoho. 1989;16(3 Pt 1):379–385.
    1. Muldoon LL, Pagel MA, Kroll RA, Brummett RE, Doolittle ND, Zuhowski EG, et al. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin Cancer Res. 2000;6(1):309–315.
    1. Doyle DJ, Goyal A, Bansal P, Garmon EH, American Society of Anesthesiologists Classification, in StatPearls. 2020. Treasure Island (FL).

Source: PubMed

3
S'abonner