Hepatotoxicity of a Cannabidiol-Rich Cannabis Extract in the Mouse Model

Laura E Ewing, Charles M Skinner, Charles M Quick, Stefanie Kennon-McGill, Mitchell R McGill, Larry A Walker, Mahmoud A ElSohly, Bill J Gurley, Igor Koturbash, Laura E Ewing, Charles M Skinner, Charles M Quick, Stefanie Kennon-McGill, Mitchell R McGill, Larry A Walker, Mahmoud A ElSohly, Bill J Gurley, Igor Koturbash

Abstract

The goal of this study was to investigate Cannabidiol (CBD) hepatotoxicity in 8-week-old male B6C3F1 mice. Animals were gavaged with either 0, 246, 738, or 2460 mg/kg of CBD (acute toxicity, 24 h) or with daily doses of 0, 61.5, 184.5, or 615 mg/kg for 10 days (sub-acute toxicity). These doses were the allometrically scaled mouse equivalent doses (MED) of the maximum recommended human maintenance dose of CBD in EPIDIOLEX® (20 mg/kg). In the acute study, significant increases in liver-to-body weight (LBW) ratios, plasma ALT, AST, and total bilirubin were observed for the 2460 mg/kg dose. In the sub-acute study, 75% of mice gavaged with 615 mg/kg developed a moribund condition between days three and four. As in the acute phase, 615 mg/kg CBD increased LBW ratios, ALT, AST, and total bilirubin. Hepatotoxicity gene expression arrays revealed that CBD differentially regulated more than 50 genes, many of which were linked to oxidative stress responses, lipid metabolism pathways and drug metabolizing enzymes. In conclusion, CBD exhibited clear signs of hepatotoxicity, possibly of a cholestatic nature. The involvement of numerous pathways associated with lipid and xenobiotic metabolism raises serious concerns about potential drug interactions as well as the safety of CBD.

Keywords: cannabidiol; hepatotoxicity; liver injury; natural products; phytochemical.

Conflict of interest statement

Quick serves as a scientific consultant for Allergen. The other authors have no conflicts of interest to disclose.

Figures

Figure 1
Figure 1
Effects of single gavage with CBD. Mice were gavaged with 246, 738, or 2460 mg/kg of CBD in sesame oil with tissues harvested at 24 h. (A) Body weight change, (B) liver to body weight ratios, intrahepatic concentrations of (C) total glutathione (GSH), (D) reduced glutathione (GSSG), and (E) GSH/GSSG ratio. Data are presented as mean ± SEM (n = 6). * indicates a significant difference as calculated with a One-Way ANOVA and Tukey’s post-hoc test, and # indicates a significant difference as calculated with a Kruskal-Wallis test with a Dunn’s post-hoc test (p < 0.05).
Figure 2
Figure 2
Effects of single gavage with CBD on intrahepatic expression of cytochrome P450s and UDP-glucuronosyltransferases. Livers were collected at 24 h and gene expression was measured using the quantitative real-time (qRT) PCR. * - indicate data analyzed by One-Way ANOVA with Tukey’s post-test, and # indicate non-normal data analyzed with a Kruskal-Wallis and Dunn’s post-hoc test. Data are presented as mean ± SEM fold changed from vehicle (n = 6), with * or # as p < 0.05; ** or ## as p < 0.01; *** or ### as p < 0.001; and **** or #### as p < 0.0001.
Figure 3
Figure 3
Effects of 2-week administration of CBD on liver histomorphology. H&E stained liver sections from (A) vehicle mice or those gavaged with (B) 61.5 mg/kg, (C) 184.5 mg/kg, or (D) 615 mg/kg CBD in sesame oil for 2 weeks. Note that 615 mg/kg group was terminated after 2–3 doses due to overt toxicity elicited by CBD.
Figure 4
Figure 4
Effects of 2-week administration of CBD on: (A) Body weight dynamics, (B) Liver to body weight ratio. Intrahepatic concentrations of (C) total glutathione (GSH), (D) reduced glutathione (GSSG), and (E) GSH/GSSG ratio. Data are presented as mean ± SEM (n = 6). # indicates a significant difference as calculated with a Kruskal-Wallis test with a Dunn’s post-hoc test with # representing p < 0.05; and ###p < 0.001.
Figure 5
Figure 5
Effects of a two-week administration of CBD on intrahepatic expression of cytochrome P450s and UDP-glucuronosyltransferases. Livers were collected 6 h after the last gavage and gene expression was measured using the quantitative real-time (qRT) PCR. * - indicate data analyzed by One-Way ANOVA with Tukey’s post-test, and # indicate non-normal data analyzed with a Kruskal-Wallis and Dunn’s post-hoc test. Data are presented as mean ± SEM fold changed from vehicle (n = 6), with * or # as p < 0.05; ** or ## as p < 0.01; *** or ### as p < 0.001; and **** or #### as p < 0.0001.

References

    1. Devinsky O., Cross J.H., Wright S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Eng. J. Med. 2017;377:699–700. doi: 10.1056/NEJMoa1611618.
    1. Thiele E.A., Marsh E.D., French J.A., Mazurkiewicz-Beldzinska M., Benbadis S.R., Joshi C., Lyons P.D., Taylor A., Roberts C., Sommerville K., et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391:1085–1096. doi: 10.1016/S0140-6736(18)30136-3.
    1. Crippa J.A., Guimaraes F.S., Campos A.C., Zuardi A.W. Translational Investigation of the Therapeutic Potential of Cannabidiol (CBD): Toward a New Age. Front. Immunol. 2018;9:2009. doi: 10.3389/fimmu.2018.02009.
    1. Olah A., Toth B.I., Borbiro I., Sugawara K., Szollosi A.G., Czifra G., Pal B., Ambrus L., Kloepper J., Camera E., et al. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J. Clin. Investig. 2014;124:3713–3724. doi: 10.1172/JCI64628.
    1. Hampson A.J., Grimaldi M., Axelrod J., Wink D. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad Sci. USA. 1998;95:8268–8273. doi: 10.1073/pnas.95.14.8268.
    1. Carvalho R.K., Santos M.L., Souza M.R., Rocha T.L., Guimaraes F.S., Anselmo-Franci J.A., Mazaro-Costa R. Chronic exposure to cannabidiol induces reproductive toxicity in male Swiss mice. J. Appl. Toxicol. 2018;38:1215–1223. doi: 10.1002/jat.3631.
    1. Carvalho R.K., Souza M.R., Santos M.L., Guimaraes F.S., Pobbe R.L.H., Andersen M.L., Mazaro-Costa R. Chronic cannabidiol exposure promotes functional impairment in sexual behavior and fertility of male mice. Reprod Toxicol. 2018;81:34–40. doi: 10.1016/j.reprotox.2018.06.013.
    1. Carty D.R., Thornton C., Gledhill J.H., Willett K.L. Developmental Effects of Cannabidiol and Delta9-Tetrahydrocannabinol in Zebrafish. Toxicol. Sci. 2018;162:137–145. doi: 10.1093/toxsci/kfx232.
    1. Schonhofen P., de Medeiros L.M., Bristot I.J., Lopes F.M., De Bastiani M.A., Kapczinski F., Crippa J.A., Castro M.A., Parsons R.B., Klamt F. Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins. Mol. Neurobiol. 2015;52:26–37. doi: 10.1007/s12035-014-8843-1.
    1. ElBatsh M.M., Assareh N., Marsden C.A., Kendall D.A. Anxiogenic-like effects of chronic cannabidiol administration in rats. Psychopharmacology (Berl) 2012;221:239–247. doi: 10.1007/s00213-011-2566-z.
    1. Mato S., Victoria Sanchez-Gomez M., Matute C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia. 2010;58:1739–1747. doi: 10.1002/glia.21044.
    1. Usami N., Yamamoto I., Watanabe K. Generation of reactive oxygen species during mouse hepatic microsomal metabolism of cannabidiol and cannabidiol hydroxy-quinone. Life Sci. 2008;83:717–724. doi: 10.1016/j.lfs.2008.09.011.
    1. Jadoon K.A., Tan G.D., O’Sullivan S.E. A single dose of cannabidiol reduces blood pressure in healthy volunteers in a randomized crossover study. JCI Insight. 2017;2 doi: 10.1172/jci.insight.93760.
    1. Rosenkrantz H., Fleischman R.W., Grant R.J. Toxicity of short-term administration of cannabinoids to rhesus monkeys. Toxicol. Appl. Pharmacol. 1981;58:118–131. doi: 10.1016/0041-008X(81)90122-8.
    1. Devinsky O., Nabbout R., Miller I., Laux L., Zolnowska M., Wright S., Roberts C. Long-term cannabidiol treatment in patients with Dravet syndrome: An open-label extension trial. Epilepsia. 2018 doi: 10.1111/epi.14628.
    1. Russo C., Ferk F., Misik M., Ropek N., Nersesyan A., Mejri D., Holzmann K., Lavorgna M., Isidori M., Knasmuller S. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 2018 doi: 10.1007/s00204-018-2322-9.
    1. Yamaori S., Ebisawa J., Okushima Y., Yamamoto I., Watanabe K. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: Role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci. 2011;88:730–736. doi: 10.1016/j.lfs.2011.02.017.
    1. Jones G., Pertwee R.G. A metabolic interaction in vivo between cannabidiol and 1 -tetrahydrocannabinol. Br. J. Pharmacol. 1972;45:375–377. doi: 10.1111/j.1476-5381.1972.tb08092.x.
    1. Bornheim L.M., Everhart E.T., Li J., Correia M.A. Induction and genetic regulation of mouse hepatic cytochrome P450 by cannabidiol. Biochem. Pharmacol. 1994;48:161–171. doi: 10.1016/0006-2952(94)90236-4.
    1. Narimatsu S., Watanabe K., Matsunaga T., Yamamoto I., Imaoka S., Funae Y., Yoshimura H. Inhibition of hepatic microsomal cytochrome P450 by cannabidiol in adult male rats. Chem. Pharm. Bull. (Tokyo) 1990;38:1365–1368. doi: 10.1248/cpb.38.1365.
    1. Bornheim L.M., Correia M.A. Selective inactivation of mouse liver cytochrome P-450IIIA by cannabidiol. Mol. Pharmacol. 1990;38:319–326.
    1. Marx T.K., Reddeman R., Clewell A.E., Endres J.R., Beres E., Vertesi A., Glavits R., Hirka G., Szakonyine I.P. An Assessment of the Genotoxicity and Subchronic Toxicity of a Supercritical Fluid Extract of the Aerial Parts of Hemp. J. Toxicol. 2018;2018:8143582. doi: 10.1155/2018/8143582.
    1. Gamble L.J., Boesch J.M., Frye C.W., Schwark W.S., Mann S., Wolfe L., Brown H., Berthelsen E.S., Wakshlag J.J. Pharmacokinetics, Safety, and Clinical Efficacy of Cannabidiol Treatment in Osteoarthritic Dogs. Front. Vet. Sci. 2018;5:165. doi: 10.3389/fvets.2018.00165.
    1. Devinsky O., Patel A.D., Cross J.H., Villanueva V., Wirrell E.C., Privitera M., Greenwood S.M., Roberts C., Checketts D., VanLandingham K.E., et al. Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome. N. Eng. J. Med. 2018;378:1888–1897. doi: 10.1056/NEJMoa1714631.
    1. FDA Federal Food, Drug, and Cosmetic Act (FD&C Act) [(accessed on 29 April 2019)]; Available online: .
    1. FDA Warning Letters and Test Results for Cannabidiol-Related Prodcuts. [(accessed on 29 April 2019)]; Available online: .
    1. ConsumerLab Product Reviews: CBD & Hemp Extract Supplements, Lotions, and Balms Review. [(accessed on 29 April 2019)]; Available online: .
    1. Szaflarski J.P., Bebin E.M., Comi A.M., Patel A.D., Joshi C., Checketts D., Beal J.C., Laux L.C., De Boer L.M., Wong M.H., et al. Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results. Epilepsia. 2018;59:1540–1548. doi: 10.1111/epi.14477.
    1. Skinner C.M., Miousse I.R., Ewing L.E., Sridharan V., Cao M., Lin H., Williams D.K., Avula B., Haider S., Chittiboyina A.G., et al. Impact of obesity on the toxicity of a multi-ingredient dietary supplement, OxyELITE Pro (New Formula), using the novel NZO/HILtJ obese mouse model: Physiological and mechanistic assessments. Food Chem. Toxicol. 2018;122:21–32. doi: 10.1016/j.fct.2018.09.067.
    1. Miousse I.R., Skinner C.M., Lin H., Ewing L.E., Kosanke S.D., Williams D.K., Avula B., Khan I.A., ElSohly M.A., Gurley B.J., et al. Safety assessment of the dietary supplement OxyELITE Pro (New Formula) in inbred and outbred mouse strains. Food Chem. Toxicol. 2017;109:194–209. doi: 10.1016/j.fct.2017.08.025.
    1. Gurley B.J., Miousse I.R., Nookaew I., Ewing L.E., Skinner C.M., Jenjaroenpun P., Wongsurawat T., Kennon-McGill S., Avula B., Bae J.Y., et al. Decaffeinated Green Tea Extract Does Not Elicit Hepatotoxic Effects and Modulates the Gut Microbiome in Lean B6C3F1 Mice. Nutrients. 2019;11:776. doi: 10.3390/nu11040776.
    1. Gaston T.E., Szaflarski J.P. Cannabis for the Treatment of Epilepsy: An Update. Curr. Neurol. Neurosci. Rep. 2018;18:73. doi: 10.1007/s11910-018-0882-y.
    1. Public Law 115–334. National Archives; Washington, DC, USA: 2018. Agriculture Improvement Act of 2018; pp. 115–334.
    1. Minami K., Saito T., Narahara M., Tomita H., Kato H., Sugiyama H., Katoh M., Nakajima M., Yokoi T. Relationship between hepatic gene expression profiles and hepatotoxicity in five typical hepatotoxicant-administered rats. Toxicol. Sci. 2005;87:296–305. doi: 10.1093/toxsci/kfi235.
    1. Jenny M., Santer E., Pirich E., Schennach H., Fuchs D. Delta9-tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J. Neuroimmunol. 2009;207:75–82. doi: 10.1016/j.jneuroim.2008.12.004.
    1. Hui T.T., Mizuguchi T., Sugiyama N., Avital I., Rozga J., Demetriou A.A. Immediate early genes and p21 regulation in liver of rats with acute hepatic failure. Am. J. Surg. 2002;183:457–463. doi: 10.1016/S0002-9610(02)00822-X.
    1. Buitrago-Molina L.E., Marhenke S., Longerich T., Sharma A.D., Boukouris A.E., Geffers R., Guigas B., Manns M.P., Vogel A. The degree of liver injury determines the role of p21 in liver regeneration and hepatocarcinogenesis in mice. Hepatology. 2013;58:1143–1152. doi: 10.1002/hep.26412.
    1. Lehmann K., Tschuor C., Rickenbacher A., Jang J.H., Oberkofler C.E., Tschopp O., Schultze S.M., Raptis D.A., Weber A., Graf R., et al. Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 2012;143:1609–1619.e4. doi: 10.1053/j.gastro.2012.08.043.
    1. Dondorf F., Fahrner R., Ardelt M., Patsenker E., Stickel F., Dahmen U., Settmacher U., Rauchfuss F. Induction of chronic cholestasis without liver cirrhosis - Creation of an animal model. World J. Gastroenterol. 2017;23:4191–4199. doi: 10.3748/wjg.v23.i23.4191.
    1. Wojcikowski K., Gobe G. Animal studies on medicinal herbs: Predictability, dose conversion and potential value. Phytother. Res. 2014;28:22–27. doi: 10.1002/ptr.4966.
    1. McGill M.R., Jaeschke H. A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol. Mech. Methods. 2015;25:589–595. doi: 10.3109/15376516.2015.1094844.

Source: PubMed

3
S'abonner