Change in Renal Glomerular Collagens and Glomerular Filtration Barrier-Related Proteins in a Dextran Sulfate Sodium-Induced Colitis Mouse Model

Chia-Jung Chang, Pi-Chao Wang, Tzou-Chi Huang, Akiyoshi Taniguchi, Chia-Jung Chang, Pi-Chao Wang, Tzou-Chi Huang, Akiyoshi Taniguchi

Abstract

Renal disease is not rare among patients with inflammatory bowel disease (IBD) and is gaining interest as a target of research. However, related changes in glomerular structural have rarely been investigated. This study was aimed at clarifying the changes in collagens and glomerular filtration barrier (GFB)-related proteins of glomeruli in a dextran sulfate sodium (DSS)-induced colitis mouse model. Acute colitis was induced by administering 3.5% DSS in Slc:ICR strain mice for eight days. Histological changes to glomeruli were examined by periodic acid-Schiff (PAS) and Masson's trichrome staining. Expressions of glomerular collagens and GFB-related proteins were analyzed by immunofluorescent staining and Western blot analysis. DSS-colitis mice showed an elevated disease activity index (DAI), colon shortening, massive cellular infiltration and colon damage, confirming that DSS-colitis mice can be used as an IBD animal model. DSS-colitis mice showed increased glycoprotein and collagen deposition in glomeruli. Interestingly, we observed significant changes in glomerular collagens, including a decrease in type IV collagen, and an increment in type I and type V collagens. Moreover, declined GFB-related proteins expressions were detected, including synaptopodin, podocalyxin, nephrin and VE-cadherin. These results suggest that renal disease in DSS-colitis mice might be associated with changes in glomerular collagens and GFB-related proteins. These findings are important for further elucidation of the clinical pathological mechanisms underlying IBD-associated renal disease.

Keywords: DSS-colitis; glomerular filtration barrier (GFB); inflammatory bowel disease (IBD); type I collagen; type IV collagen; type V collagen.

Conflict of interest statement

The authors declare that they have no conflicts of interest, financial or otherwise, regarding this article.

Figures

Figure 1
Figure 1
Investigating mouse glomerular structural changes associated with dextran sulfate sodium (DSS)-induced colitis. Slc:ICR mice were administered 3.5% DSS in drinking water for eight days, then allowed intake of filtered water on Day 8. Control mice were given filtered water. All mice were sacrificed on Day 9 and further assessments were performed. Abbreviation: GFB, glomerular filtration barrier.
Figure 2
Figure 2
Macro- and microscopic changes to bowel in mice with DSS-induced colitis. Changes in body weight (A) and disease activity index (DAI) (B) were evaluated daily. Colon length was measured after sacrifice (C). Hematoxylin and eosin (HE) staining (D) showed distortion of crypts (arrowhead), loss of goblet cells (arrow), and infiltration of inflammatory cells (red circle) in colon sections from DSS-treated mice. All values are given as mean ± SEM (n = 6 mice); * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. control. Scale bars: 200 μm (a,b); and 100 μm (c,d).
Figure 3
Figure 3
Macro- and microscopic changes to the kidney and glomeruli in mice after DSS administration. Mouse kidney appearance (A) and weight (B) were determined at harvest. Histological manifestations were determined by staining with periodic acid-Schiff (PAS) to assess the basement membrane of glomeruli (C), and Masson’s trichrome (MT) staining to assess collagen deposition (D), respectively. Compared to control mice, glomerular accumulation of PAS-positive matrix (arrow) was prominent in DSS-treated mice (C). Blue staining indicates the presence of collagen fibers in tissues (D). All values are given as mean ± SEM (n = 6 mice); ** p < 0.01 vs. control. Scale bars: 100 μm and 20 μm.
Figure 4
Figure 4
Changes in glomerular collagens in mice after DSS administration. Immunofluorescent microscopy (A) and Western blot analysis of protein expression (B) for type IV collagen (COL IV; A-a, A-a’; B-a; 160–190 kDa), type I collagen (COL I; A-b, A-b’; B-b; 150 kDa), and type V collagen (COL V; A-c, A-c’; B-c; 220 kDa) were conducted for control and DSS-colitis mice. Representative bands (B, left) and relative band intensity ratios were analyzed (B, right). (C) Illustration of glomerular collagens changes in this study. All values are means ± SEM (n = 6); * p < 0.05 and ** p < 0.01 vs. control. Scale bars = 10 μm. Abbreviations: GBM, glomerular basement membrane; BC, Bowman’s capsule.
Figure 5
Figure 5
Changes in GFB-related proteins in mice after DSS administration. Immunofluorescent microscopy (A) and Western blot analysis of protein expression (B) against synaptopodin (A-a, A-a’; B-a; 100 kDa), podocalyxin (A-b, A-b’; B-b; 130 kDa), nephrin (A-c, A-c’; B-c; 185 kDa) and VE-cadherin (A-d, A-d’; B-d; 130 kDa) in glomeruli were conducted for control and DSS-colitis mice. (B) Representative bands (left), and relative band intensity ratios (right) were analyzed. (C) Illustration of GFB-related proteins changes in this study. All values are means ± SEM (n = 6), * p < 0.05 and ** p < 0.01 vs. control. Scale bars = 10 μm (A-a, A-a’, A-b, A-c, A-c’); 20 μm (A-b’, A-d, A-d’). Abbreviation: SYNPO, synaptopodin; PODXL, podocalyxin; VE-Cad, VE-cadherin; FP, foot processes.

References

    1. Sartor R.B. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease. Gastroenterol. Clin. N. Am. 1995;24:475–507.
    1. Ricart E., Panaccione R., Loftus E.V., Tremaine W.J., Harmsen W.S., Zinsmeister A.R., Sandborn W.J. Autoimmune disorders and Extraintestinal manifestations in First-degree familial and sporadic inflammatory bowel disease. Inflamm. Bowel Dis. 2004;10:207–214. doi: 10.1097/00054725-200405000-00005.
    1. Christodoulou D.K., Katsanos K.H., Kitsanou M., Stergiopoulou C., Hatzis J., Tsianos E.V. Frequency of extraintestinal manifestations in patients with inflammatory bowel disease in northwest Greece and review of the literature. Dig. Liver Dis. 2002;34:781–786. doi: 10.1016/S1590-8658(02)80071-8.
    1. Ambruzs J.M., Walker P.D., Larsen C.P. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin. J. Am. Soc. Nephrol. 2014;9:265–270. doi: 10.2215/CJN.04660513.
    1. Ambruzs J.M., Larsen C.P. Renal Manifestations of Inflammatory Bowel Disease. Rheum. Dis. Clin. N. Am. 2018;44:699–714. doi: 10.1016/j.rdc.2018.06.007.
    1. Rabin B.S., Rogers S. Pathologic changes in the liver and kidney produced by immunization with intestinal antigens. Am. J. Pathol. 1972;84:201–210.
    1. Kreisel W., Wolf L.M., Grotz W., Grieshaber M. Renal tubular damage: An extraintestinal manifestation of chronic inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 1996;8:461–468.
    1. Khosroshahi H.T., Shoja M.M. Tubulointerstitial disease and ulcerative colitis. Nephrol. Dial. Transplant. 2006;21:2340. doi: 10.1093/ndt/gfl163.
    1. Corica D., Romano C. Renal Involvement in Inflammatory Bowel Diseases. J. Crohns Colitis. 2016;10:226–235. doi: 10.1093/ecco-jcc/jjv138.
    1. Fraser J.S., Muller A.F., Smith D.J., Newman D.J., Lamb E.J. Renal tubular injury is present in acute inflammatory bowel disease prior to the introduction of drug therapy. Aliment. Pharmacol. Ther. 2001;15:1131–1137. doi: 10.1046/j.1365-2036.2001.01041.x.
    1. Tokuyama H., Wakino S., Konishi K., Hashiguchi A., Hayashi K., Itoh H. Acute interstitial nephritis associated with ulcerative colitis. Clin. Exp. Nephrol. 2010;14:483–486. doi: 10.1007/s10157-010-0294-z.
    1. Chassaing B., Aitken J.D., Malleshappa M., Vijay-Kumar M. Dextran Sulfate sodium (DSS)-induced Colitis in mice. Trends Pharmacol. Sci. 2014;104 doi: 10.1002/0471142735.im1525s104.
    1. de Lange K.M., Barrett J.C. Understanding inflammatory bowel disease via immunogenetics. J. Autoimmun. 2015;64:91–100. doi: 10.1016/j.jaut.2015.07.013.
    1. Eichele D.D., Kharbanda K.K. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 2017;23:6016–6029. doi: 10.3748/wjg.v23.i33.6016.
    1. Ranganathan P., Jayakumar C., Santhakumar M., Ramesh G. Netrin-1 regulates colon-kidney cross talk through suppression of IL-6 function in a mouse model of DSS-colitis. Am. J. Physiol. Renal Physiol. 2013;304:1187–1197. doi: 10.1152/ajprenal.00702.2012.
    1. Ranganathan P., Jayakumar C., Manicassamy S., Ramesh G. CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation. Am. J. Physiol. Renal Physiol. 2013;305:1422–1427. doi: 10.1152/ajprenal.00319.2013.
    1. Meyer T.W. Tubular injury in glomerular disease. Kidney Int. 2003;63:774–787. doi: 10.1046/j.1523-1755.2003.00795.x.
    1. Kriz W., LeHir M. Pathways to nephron loss starting from glomerular diseases-Insights from animal models. Kidney Int. 2005;67:404–419. doi: 10.1111/j.1523-1755.2005.67097.x.
    1. Lennon R., Randles M.J., Humphries M.J. The Importance of Podocyte Adhesion for a Healthy Glomerulus. Front. Endocrinol. 2014;5:160. doi: 10.3389/fendo.2014.00160.
    1. Arif E., Nihalani D. Glomerular Filtration Barrier Assembly: An insight. Postdoc. J. 2013;1:33–45. doi: 10.14304/SURYA.JPR.V1N4.4.
    1. Scott R.P., Quaggin S.E. The cell biology of renal filtration. J. Cell Biol. 2015;209:199–210. doi: 10.1083/jcb.201410017.
    1. Miner J.H. Glomerular basement membrane composition and the filtration barrier. Pediatr. Nephrol. 2011;26:1413–1417. doi: 10.1007/s00467-011-1785-1.
    1. Byron A., Randles M.J., Humphries J.D., Mironov A., Hamidi H., Harris S., Mathieson P.W., Saleem M.A., Satchell S.C., Zent R., et al. Glomerular Cell Cross-Talk Influences Composition and Assembly of Extracellular Matrix. J. Am. Soc. Nephrol. 2014;25:953–966. doi: 10.1681/ASN.2013070795.
    1. Chen Y.M., Miner J.H. Glomerular basement membrane and related glomerular disease. Transl. Res. 2012;160:291–297. doi: 10.1016/j.trsl.2012.03.004.
    1. Chew C., Lennon R. Basement Membrane Defects in Genetic Kidney Diseases. Front. Pediatr. 2018;6:11. doi: 10.3389/fped.2018.00011.
    1. Hsu H.H., Murasawa Y., Qi P., Nishimura Y., Wang P.C. Type V collagen fibrils in mouse metanephroi. Biochem. Biophys. Res. Commun. 2013;441:649–654. doi: 10.1016/j.bbrc.2013.10.097.
    1. Genovese F., Manresa A.A., Leeming D., Karsdal M., Boor P. The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis. Fibrogenes. Tissue Repair. 2014;7:4. doi: 10.1186/1755-1536-7-4.
    1. Levine J.S., Burakoff R. Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol. Hepatol. 2011;7:235–241.
    1. Da Silva A.P., Pollett A., Rittling S.R., Denhardt D.T., Sodek J., Zohar R. Exacerbated tissue destruction in DSS-induced acute colitis of OPN-null mice is associated with downregulation of TNF-α expression and non-programmed cell death. J. Cell Physiol. 2006;208:629–639. doi: 10.1002/jcp.20701.
    1. Sandilands E.A., Dhaun N., Dear J.W., Webb D.J. Measurement of renal function in patients with chronic kidney disease. Br. J. Clin. Pharmacol. 2013;76:504–515. doi: 10.1111/bcp.12198.
    1. Emamian S.A., Nielsen M.B., Pedersen J.F., Ytte L. Kidney dimensions at sonography: Correlation with age, sex, and habitus in 665 adult volunteers. Am. J. Roentgenol. 1993;160:83–86. doi: 10.2214/ajr.160.1.8416654.
    1. Lauritzen D., Andreassen B.U., Heegaard N.H.H., Klinge L.G., Walsted A.M., Neland M., Nielsen R.G., Wittenhagen P. Pediatric Inflammatory Bowel Diseases: Should We Be Looking for Kidney Abnormalities? Inflamm. Bowel Dis. 2018;24:2599–2605. doi: 10.1093/ibd/izy166.
    1. Kashgarian M., Sterze B. The pathobiology of the mesangium. Kidney Int. 1992;41:524–529. doi: 10.1038/ki.1992.74.
    1. Duffield J.S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Investig. 2014;124:2299–2306. doi: 10.1172/JCI72267.
    1. Miner J.H. Renal basement membrane components. Kidney Int. 1999;56:2016–2024. doi: 10.1046/j.1523-1755.1999.00785.x.
    1. Niu H., Li Y., Li H., Chi Y., Zhuang M., Zhang T., Liu M., Nie L. Matrix metalloproteinase 12 modulates high-fat-diet induced glomerular fibrogenesis and inflammation in a mouse model of obesity. Sci. Rep. 2016;6:20171. doi: 10.1038/srep20171.
    1. Tamsma J.T., van den Born J., Bruijn J.A., Assmann K.J., Weening J.J., Berden J.H., Wieslander J., Schrama E., Hermans J., Veerkamp J.H. Expression of glomerular extracellular matrix components in human diabetic nephropathy: Decrease of heparan sulphate in the glomerular basement membrane. Diabetologia. 1994;37:313–320. doi: 10.1007/BF00398060.
    1. Morita M., Uchigata Y., Hanai K., Ogawa Y., Iwamoto Y. Association of urinary type IV collagen with GFR decline in young patients with type 1 diabetes. Am. J. Kidney Dis. 2011;58:915–920. doi: 10.1053/j.ajkd.2011.04.019.
    1. Yoshioka K., Tohda M., Takemura T., Akano N., Matsubara K., Ooshima A., Maki S. Distribution of type I collagen in human kidney diseases in comparison with type III collagen. J. Pathol. 1990;162:141–148. doi: 10.1002/path.1711620207.
    1. Sumiyoshi H., Kitamura H., Matsuo N., Tatsukawa S., Ishikawa K., Okamoto O., Fujikura Y., Fujiwara S., Yoshioka H. Transient expression of mouse Pro-α3(V) collagen gene (Col5a3) in wound healing. Connect. Tissue Res. 2012;5:313–317. doi: 10.3109/03008207.2011.653061.
    1. Morita H., Hasegawa T., Minamoto T., Oda Y., Inui K., Tayama H., Nakao N., Nakamoto Y., Ideura T., Yoshimura A. Collagenofibrotic glomerulopathy with a widespread expression of type-v collagen. Virchows Arch. 2003;442:163–168.
    1. Murasawa Y., Hayashi T., Wang P.C. The role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells. Exp. Cell Res. 2008;314:3638–3653. doi: 10.1016/j.yexcr.2008.08.024.
    1. Sekulic M., Pichler S. A compendium of urinary biomarkers indicative of glomerular podocytopathy. Pathol. Res. Int. 2013;2013:782395. doi: 10.1155/2013/782395.
    1. Kwon S.K., Kim S.J., Kim H.Y. Urine synaptopodin excretion is an important marker of glomerular disease progression. Korean J. Intern Med. 2016;31:938–943. doi: 10.3904/kjim.2015.226.
    1. Nielsen J.S., McNagny K.M. The role of podocalyxin in health and disease. J. Am. Soc. Nephrol. 2009;20:1669–1676. doi: 10.1681/ASN.2008070782.
    1. Greka A., Mundel P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 2012;74:299–323. doi: 10.1146/annurev-physiol-020911-153238.
    1. Spagnuolo R., Corada M., Orsenigo F., Zanetta L., Deuschle U., Sandy P., Schneider C., Drake C.J., Breviario F., Dejana E. Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis. Blood. 2004;103:3005–3012. doi: 10.1182/blood-2003-07-2459.
    1. Giannotta M., Trani M., Dejana E. VE-Cadherin and endothelial Adherens Junctions: Active guardians of vascular integrity. Dev. Cell. 2013;26:441–454. doi: 10.1016/j.devcel.2013.08.020.
    1. Hernandez N.M., Casselbrant A., Joshi M., Johansson B.R., Sumitran-Holgersson S. Antibodies to kidney endothelial cells contribute to a “leaky” glomerular barrier in patients with chronic kidney diseases. Am. J. Physiol. Renal Physiol. 2012;302:F884–F894. doi: 10.1152/ajprenal.00250.2011.
    1. Murthy S.N., Cooper H.S., Shim H., Shah R.S., Ibrahim S.A., Sedergran D.J. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporine. Dig. Dis. Sci. 1993;38:1722–1734. doi: 10.1007/BF01303184.
    1. McManus J.F. The Periodic Acid Routine Applied to the Kidney. Am. J. Pathol. 1948;24:643–653.
    1. Cohen A.H. Masson’s trichrome stain in the evaluation of renal biopsies. An appraisal. Am. J. Clin. Pathol. 1976;65:631–643. doi: 10.1093/ajcp/65.5.631.
    1. Nishimura Y., Hsu H.H., Wang P.C. Detection of initial angiogenesis from dorsal aorta into metanephroi and elucidation of its role in kidney development. Regener. Ther. 2016;4:27–35. doi: 10.1016/j.reth.2016.01.003.
    1. Nagao T., Suzuki K., Utsunomiya K., Matsumura M., Saiga K., Wang P.C., Minamitani H., Aratani Y., Nakayama T., Suzuki K. Direct activation of glomerular endothelial cells by anti-moesin activity of anti-myeloperoxidase antibody. Nephrol. Dial. Transplant. 2011;26:2752–2760. doi: 10.1093/ndt/gfr032.

Source: PubMed

3
Subskrybuj