Impaired Duodenal Palmitoylethanolamide Release Underlies Acid-Induced Mast Cell Activation in Functional Dyspepsia

Giovanni Sarnelli, Marcella Pesce, Luisa Seguella, Jie Lu, Eleonora Efficie, Jan Tack, Fatima Domenica Elisa De Palma, Alessandra D'Alessandro, Giuseppe Esposito, Giovanni Sarnelli, Marcella Pesce, Luisa Seguella, Jie Lu, Eleonora Efficie, Jan Tack, Fatima Domenica Elisa De Palma, Alessandra D'Alessandro, Giuseppe Esposito

Abstract

Background & aims: Acid hypersensitivity is claimed to be a symptomatic trigger in functional dyspepsia (FD); however, the neuroimmune pathway(s) and the mediators involved in this process have not been investigated systematically. Palmitoylethanolamide (PEA) is an endogenous compound, able to modulate nociception and inflammation, but its role in FD has not been assessed.

Methods: Duodenal biopsy specimens from FD and control subjects, and peroxisome proliferator-activated receptor-α (PPARα) null mice were cultured at a pH of 3.0 and 7.4. Mast cell (MC) number, the release of their mediators, and the expression of transient receptor potential vanilloid receptor (TRPV)1 and TRPV4, were evaluated. All measurements also were performed in the presence of a selective blocker of neuronal action potential (tetradotoxin). FD and control biopsy specimens in acidified medium also were incubated in the presence of different PEA concentrations, alone or combined with a selective PPARα or PPAR-γ antagonist.

Results: An acid-induced increase in MC density and the release of their mediators were observed in both dyspeptic patients and controls; however, this response was amplified significantly in FD. This effect was mediated by submucosal nerve fibers and up-regulation of TRPV1 and TRPV4 receptors because pretreatment with tetradotoxin significantly reduced MC infiltration. The acid-induced endogenous release of PEA was impaired in FD and its exogenous administration counteracts MC activation and TRPV up-regulation.

Conclusions: Duodenal acid exposure initiates a cascade of neuronal-mediated events culminating in MC activation and TRPV overexpression. These phenomena are consequences of an impaired release of endogenous PEA. PEA might be regarded as an attractive therapeutic strategy for the treatment of FD.

Keywords: Duodenal Mucosa; Enteric Nervous System; Functional Dyspepsia; Mast Cells; Visceral Hypersensitivity.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Effects of acid challenge on mucosal MC numbers and activation. (A) Histochemical images showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in duodenal mucosa of dyspeptic and control biopsy specimens cultured at pH 3.0 and 7.4, respectively, and in the presence or absence of TTX. Original magnification: 20×. Data show the number of MCs counted per square millimeter of tissue. (C) Representative immunofluorescence images showing the close proximity of tryptase-immunoreactive cells (red) to NeuN-positive fibers (green). Original magnification: 20×. (D) Relative quantification of tryptase-immunopositive cells. Data show the number of tryptase-positive cells per square millimeter of tissue. (E–H) ELISA assays, respectively, quantifying the release of tryptase, histamine, NGF, and PGD2 in FD and healthy duodenal mucosal biopsy specimens. ∗∗∗P < .001 vs control; °°°P < .001 FD untreated vs pretreatment with TTX; #P < .05 control untreated vs pretreatment with TTX. All results are expressed as means ± SD of 20; n = 20 and 10 (B and D) and 10 and 6 (F–H) dyspeptic and control subjects, respectively.
Figure 2
Figure 2
Acid challenge up-regulates TRPV1 and TRPV4 expression in submucosal nerve endings. (A) Immunofluorescence staining of NeuN (green) and TRPV1-positive cells (red), and (B) relative graph bars quantifying TRPV1-positive cells in duodenal mucosa of dyspeptic and controls biopsy specimens cultured at pH 3.0 and 7.4, respectively, and in the presence or absence of TTX. Original magnification: 20×. Data show the number of TRPV1-positive cells per square millimeter of tissue. (C) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein β-actin) quantifying TRPV1 protein expression. (D) Immunofluorescence staining and (E) relative graph bars quantifying TRPV4-positive cells (red). Original magnification: 20×. Data show the number of TRPV4-positive cells per square millimeter of tissue. (F) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein β-actin) quantifying TRPV4 protein expression. ∗∗∗P < .001 vs control; °°°P < .001 FD untreated vs pretreatment with TTX and #P < .05 control untreated vs pretreatment with TTX. All results are expressed as means ± SD of 20; n = 20 and 10 (B and E) and 10 and 6 (C and F) dyspeptic and control subjects, respectively. OD, optical density.
Figure 3
Figure 3
Acid-induced release of PEA and PPARα expression in duodenal mucosa. (A) Representative chromatography coupled to tandem mass spectrometry analysis and (B) relative quantification of PEA levels (expressed as nanomolar concentration in duodenal homogenates) from mucosa of 20 dyspeptic and 10 control biopsy specimens cultured at pH 3.0 and 7.4, respectively, and in the presence or absence of TTX. (C) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein β-actin) showing PPARα protein expression in tissue homogenates from 10 and 6 dyspeptic and control subjects, respectively. ∗∗∗P < .001 vs control; °P < .05 FD untreated vs pretreatment with TTX; ###P < .05 control untreated vs pretreatment with TTX. All results are expressed as means ± SD.
Figure 4
Figure 4
Effects of exogenous PEA administration on acid-induced MC recruitment, TRPV1 and TRPV4 expression, and inflammatory mediator release in duodenal mucosa from dyspeptic patients. (A) Immunohistochemical images showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in duodenal mucosa deriving from dyspeptic patient cultured biopsy specimens at (1) pH = 3.0, in the presence of (2) exogenous PEA (0.1 μmol/L), co-incubated with either (3) PPARα antagonist MK866 (3 μmol/L), or (4) PPARγ antagonist (GW9662 9 nmol/L). Original magnification: 20×. Data show the number of MCs counted per square millimeter of tissue. Immunofluorescence staining of NeuN (green) and (C) tryptase-, (E) TRPV1-, (G) TRPV4-positive cells (all red) and relative graph bars quantifying (D) tryptase-positive, (F) TRPV1-positive, (H) and TRPV4-positive cells. Data show the number of immune-reactive cells counted per square millimeter of tissue. Original magnification: 20×. (I) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein β-actin) quantifying (J) TRPV1 and (K) TRPV4 protein expression at (1) pH = 3.0, in the presence of increasing concentrations of exogenous PEA (2) 0.001 μmol/L, (3) 0.01 μmol/L, (4) 0.1 μmol/L alone, or co-incubated with either (5) PPARα antagonist MK866 (3 μmol/L) or (6) PPARγ antagonist (GW9662 9 nmol/L). (L–O) ELISA essays quantifying, respectively, the release of tryptase, NGF (pg/mL), histamine, and PGD2 in dyspeptic biopsy specimens, cultured in the same experimental conditions. ∗P < .05 for PEA 0.001 μmol/L, ∗∗P < .01 for PEA 0.01 μmol/L, and ∗∗∗P < .001 for PEA 0.1 μmol/L vs acid challenge and for co-incubation with PPARγ antagonist GW9662 vs acid challenge; °°°P < .001 for co-incubation with PPARα antagonist MK866 vs acid challenge. All results are means ± SD of n = 20 dyspeptic subjects.
Figure 5
Figure 5
Effects of increasing concentrations of exogenous PEA in in vitro duodenal biopsy specimens from controls. (A) Immunohistochemical images showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in duodenal mucosa deriving from control cultured biopsy specimens at (1) pH = 3.0, in the presence of (2) exogenous PEA (0.1 μmol/L), co-incubated with either (3) PPARα antagonist MK866 (3 μmol/L) or (4) PPARγ antagonist (GW9662 9 nmol/L). Original magnification: 20×. Data show the number of MCs counted per square millimeter of tissue. Immunofluorescence staining of NeuN (green) and (C) tryptase-positive, (E) TRPV1-positive, and (G) TRPV4-positive cells (all red) and relative graph bars quantifying (D) tryptase-positive, (F) TRPV1-positive, (H) and TRPV4-positive cells deriving from controls biopsy specimens, cultured in the same experimental conditions. Original magnification: 20×. Data show the number of immune-reactive cells counted per square millimeter of tissue. (I) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein β-actin) quantifying (J) TRPV1 and (K) TRPV4 protein expression in tissue homogenates deriving from control cultured biopsy specimens at (1) pH = 3.0, in the presence of increasing concentrations of exogenous PEA (2) 0.001 μmol/L, (3) 0.01 μmol/L, (4) 0.1 μmol/L alone or co-incubated with either (5) PPARα antagonist MK866 (3 μmol/L) or (6) PPARγ antagonist (GW9662 9 nmol/L). (L–O) ELISA essays quantifying, respectively, the release of tryptase, NGF, histamine, and PGD2 in dyspeptic biopsy specimens, cultured in the same experimental conditions. ∗P < .05 for PEA 0.001 μmol/L, ∗∗P < .01 for PEA 0.01 μmol/L, and ∗∗∗P < .001 for PEA 0.1 μmol/L vs acid challenge and for co-incubation with PPARγ antagonist GW9662 vs acid challenge; °°°P < .001 for co-incubation with PPARα antagonist MK866 vs acid challenge. All results are means ± SD of n = 10 control subjects.
Figure 6
Figure 6
Effects of acid challenge and exogenous PEA administration in PPARα KO mice. (A) Histochemical images showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in the duodenum of PPARα KO mice at pH 3.0 and 7.4, in the presence or absence of exogenous PEA 10 μmol/L. Original magnification: 20×. Data show the number of MCs counted per square millimeter of tissue. Immunofluorescence staining of NeuN (green) and (C) tryptase-positive, (E) TRPV1-positive, and (G) TRPV4-positive cells (all red) and relative graph bars quantifying (D) tryptase-positive, (F) TRPV1-positive, (H) and TRPV4-positive cells deriving from PPARα KO mice in the same experimental conditions. Original magnification: 20×. Data show the number of immune-reactive cells counted per square millimeter of tissue. (I) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein β-actin) quantifying (J) TRPV1 and (K) TRPV4 protein expression. (L–O) ELISA essays quantifying, respectively, the release of tryptase, NGF, histamine, and PGD2 in PPARα KO mice, in the same experimental conditions. All results are the means ± SD of n = 10 mice for each experimental group, respectively. ∗∗∗P < .001 vs acid challenge.

References

    1. Tack J., Talley N.J. Functional dyspepsia--symptoms, definitions and validity of the Rome III criteria. Nat Rev Gastroenterol Hepatol. 2013 Mar;10(3):134–141. doi: 10.1038/nrgastro.2013.14.
    1. Tack J., Talley N.J., Camilleri M., Holtmann G., Hu P., Malagelada J.R., Stanghellini V. Functional gastroduodenal disorders. Gastroenterology. 2006;130:1466–1479.
    1. Camilleri M., Stanghellini V. Current management strategies and emerging treatments for functional dyspepsia. Nat Rev Gastroenterol Hepatol. 2013 Mar;10(3):187–194. doi: 10.1038/nrgastro.2013.11.
    1. Tack J., Bisschops R., Sarnelli G. Pathophysiology and treatment of functional dyspepsia. Gastroenterology. 2004 Oct;127(4):1239–1255.
    1. Vanheel H., Farré R. Changes in gastrointestinal tract function and structure in functional dyspepsia. Nat. Rev. Gastroenterol. Hepatol. 2013;10:142–149. doi: 10.1038/nrgastro.2012.255.
    1. Lee K.J., Tack J. Duodenal Implications in the Pathophysiology of Functional Dyspepsia. J Neurogastroenterol Motil. 2010;16(3 July) doi: 10.5056/jnm.2010.16.3.251.
    1. Jung H., Talley N.J. Role of the Duodenum in the Pathogenesis of Functional Dyspepsia: A Paradigm Shift. J Neurogastroenterol Motil. 2018;24(3 July) doi: 10.5056/jnm18060.
    1. Talley N.J., Meineche-Schmidt V., Pare P., Duckworth M., Räisänen P., Pap A., Kordecki H., Schmid V. Efficacy of omeprazole in functional dyspepsia: double-blind, randomized, placebo-controlled trials [the Bond and Opera studies] Aliment Pharmacol Ther. 1998;12:1055–1065.
    1. Suzuki H., Kusunoki H., Kamiya T., Futagami S., Yamaguchi Y., Nishizawa T., Iwasaki E., Matsuzaki J., Takahashi S., Sakamoto C., Haruma K., Joh T., Asakura K., Hibi T. Effect of lansoprazole on the epigastric symptoms of functional dyspepsia (ELF study): A multicentre, prospective, randomized, double-blind, placebo-controlled clinical trial. United European Gastroenterol J. 2013 Dec;1(6):445–452. doi: 10.1177/2050640613510904.
    1. Schwarz M.P., Samsom M., van Berge Henegouwen G.P., Smout A.J. Effect of inhibition of gastric acid secretion on antropyloroduodenal motor activity and duodenal acid hypersensitivity in functional dyspepsia. Aliment Pharmacol Ther. 2001;15:1921–1928.
    1. Samsom M., Verhagen M.A., van Berge Henegouwen G.P., Smout A.J. Abnormal clearance of exogenous acid and increased acid sensitivity of the proximal duodenum in dyspeptic patients. Gastroenterology. 1999;116:515–520.
    1. Schwarz M.P., Samsom M., Smout A.J.P.M. Chemospecific alterations in duodenal perception and motor response in functional dyspepsia. Am J Gastroenterol. 2001;96:2596–2602.
    1. Lee K.J., Demarchi B., Demedts I., Sifrim D., Raeymaekers P. Tack JA pilot study on duodenal acid exposure and its relationship to symptoms in functional dyspepsia with prominent nausea. Am J Gastroenterol. 2004;99:1765–1773.
    1. Bratten J., Jones M.P. Prolonged recording of duodenal acid exposure in patients with functional dyspepsia and controls using a radiotelemetry pH monitoring system. J Clin Gastroenterol. 2009;43:527–533.
    1. di Stefano M., Vos R., Vanuytsel T., Janssens J., Tack J. Prolonged duodenal acid perfusion and dyspeptic symptom occurrence in healthy volunteers. Neurogastroenterol Motil. 2009;21:712–e740.
    1. Dunne D.P., Paterson W.G. Acid-induced esophageal shortening in humans: A cause of hiatus hernia? Can J Gastroenterol. 2000;14(10):847–850.
    1. Barclay R.L., Dinda P.K., Morris G.P., Paterson W.G. Morphological evidence of mast cell degranulation in an animal model of acid-induced esophageal mucosal injury. Dig Dis Sci. 1995;269:G219–G224.
    1. Wauters L., Ceulemans M., Frings D., Accarie A., Toth J., Farré R., De Hertogh G., Tack J., Vanuytsel T. Proton pump inhibitors reduce duodenal eosinophilia and symptoms in functional dyspepsia patients by anti-inflammatory rather than acid-suppressive effects abstract DDW 2020, in press. Gastroenterology. 2020;158:S52.
    1. Petrosino S., Iuvone T., Di Marzo V. N-palmitoyl-ethanolamine: Biochemistry and new therapeutic opportunities. Biochimie. 2010;92:724–727.
    1. Pesce M., Esposito G., Sarnelli G. Endocannabinoids in the treatment of gastrointestinal inflammation and symptoms. Current Opinion in Pharmacology. 2018;43:81–86. doi: 10.1016/j.coph.2018.08.009.
    1. Pesce M., D'Alessandro A., Borrelli O., Gigli S., Seguella L., Cuomo R., Esposito G., Sarnelli G. Endocannabinoid-related compounds in gastrointestinal diseases. J. Cell. Mol. Med. 2018;22(2):706–715.
    1. Lau B.K., Vaughan C.W. Targeting the endogenous cannabinoid system to treat neuropathic pain. Front Pharmacol. 2014;5:28.
    1. Fowler C.J., Jonsson K.O., Tiger G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem Pharmacol. 2001;62:517–526.
    1. Cravatt B.F., Lichtman A.H. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol. 2003;7:469–475.
    1. Aloe L., Leon A., Levi-Montalcini R. A proposed autacoid mechanism controlling mastocyte behaviour. Agents Action. 1993;39:145–147.
    1. Facci L., Dal Toso R., Romanello S., Buriani A., Skaper S.D., Leon A. Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA. 1995;92:3376–3380.
    1. Ho W.-S.V., Barrett D.A., Randall M.D. ‘Entourage’ effects of Npalmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol. 2008;155:837–846.
    1. Lo Verme J., Fu J., Astarita G., La Rana G., Russo R., Calignano A., Piomelli D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol. 2005 Jan;67(1):15–19.
    1. Fichna J., Wood J.T., Papanastasiou M., Vadivel S.K., Oprocha P., Sałaga M., Sobczak M., Mokrowiecka A., Cygankiewicz A.I., Zakrzewski P.K., Małecka-Panas E., Krajewska W.M., Kościelniak P., Makriyannis A., Storr M.A. Endocannabinoid and Cannabinoid-Like Fatty Acid Amide Levels Correlate with Pain-Related Symptoms in Patients with IBS-D and IBS-C: A Pilot Study. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0085073.
    1. Turner H., Del Carmen K.A., Stokes A. Link between TRPV channels and mast cell function. Handb. Exp. Pharmacol. 2007;179:457–471.
    1. Esposito G., Capoccia E., Turco F., Palumbo I., Lu J., Steardo A., Cuomo R., Sarnelli G., Steardo L. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut. 2014 Aug;63(8):1300–1312. doi: 10.1136/gutjnl-2013-305005.
    1. van Boxel O.S., ter Linde J.J., Siersema P.D., Smout A.J.P.M. Role of chemical of the duodenum in dyspeptic symptom generation. Am J Gastroenterol. 2010 Apr;105(4):803–811. doi: 10.1038/ajg.2010.100.
    1. Kurashima Y., Goto Y., Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur J Immunol. 2013 Dec;43(12):3108–3115. doi: 10.1002/eji.201343782.
    1. Barbara G., Stanghellini V., De Giorgio R., Cremon C., Cottrell G.S., Santini D., Pasquinelli G., Morselli-Labate A.M., Grady E.F., Bunnett N.W., Collins S.M., Corinaldesi R. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004 Mar;126(3):693–702.
    1. Barbara G., Wang B., Stanghellini V., de Giorgio R., Cremon C., Di Nardo G., Trevisani M., Campi B., Geppetti P., Tonini M., Bunnett N.W., Grundy D., Corinaldesi R. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007 Jan;132(1):26–37.
    1. Wood J.D. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology. 2004;127:635–657. doi: 10.1053/j.gastro.2004.02.017.
    1. Reed D.E., Barajas-Lopez C., Cottrell G., Velazquez-Rocha S., Dery O., Grady E.F., Bunnett N.W., Vanner S.J. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol. 2003 Mar1;547(Pt 2):531–542.
    1. Chatterjea D., Martinov T. Mast cells: Versatile gatekeepers of pain. Mol Immunol. 2014 Mar 22 pii: S0161-5890[14]00054-6. doi:10.1016/j.molimm.2014.03.001.
    1. Schemann M., Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology. 2013 Apr;144(4):698–704.e4. doi: 10.1053/j.gastro.2013.01.040.
    1. Buhner S., Schemann M. Mast cell–nerve axis with a focus on the human gut. Biochimica et Biophysica Acta 1822. 2012:85–92.
    1. Vasina V., Barbara G., Talamonti L., Stanghellini V., Corinaldesi R., Tonini R., De Pontia F., De Giorgio R. Enteric neuroplasticity evoked by inflammation. Autonomic Neuroscience. 2006;126-127:264–272. doi: 10.1016/j.autneu.2006.02.025.
    1. Christianson J.A., Bielefeldt K., Altier C., Cenac N., Davis B.M., Gebhart G.F., High K.W., Kollarik M., Randich A., Undem B., Vergnolle N. Development, plasticity and modulation of visceral afferents. Brain Res Rev. 2009 Apr;60(1):171–186. doi: 10.1016/j.brainresrev.2008.12.004.
    1. Vay L., Gu C., McNaughton P.A. The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol. 2012 Feb;165(4):787–801. doi: 10.1016/j.brainresrev.2008.12.004.
    1. Demir I.E., Schäfer K.H., Tieftrunk E., Friess H., Ceyhan G.O. Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity. Acta Neuropathol. 2013 Apr;125(4):491–509. doi: 10.1007/s00401-013-1099-4.
    1. Cenac N., Altier C., Motta J.P., d'Aldebert E., Galeano S., Zamponi G.W., Vergnolle N. Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut. 2010 Apr;59(4):481–488. doi: 10.1136/gut.2009.192567.
    1. Brierley S.M., Page A.J., Hughes P.A., Adam B., Liebregts T., Cooper N.J., Holtmann G., Liedtke W., Blackshaw L.A. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology. 2008 Jun;134(7):2059–2069. doi: 10.1053/j.gastro.2008.01.074.
    1. Jara-Oseguera A., Nieto-Posadas A., Szallasi A., Islas L.D., Rosenbaum T. Molecular Mechanisms of TRPV1 Channel Activation. The Open Pain Journal. 2010;3:68–81. doi: 10.2174/1876386301003010068.
    1. Balvers M.G., Verhoeckx K.C., Meijerink J., Wortelboer H.M., Witkamp R.F. Measurement of palmitoylethanolamide and other N-acylethanolamines during physiological and pathological conditions. CNS Neurol Disord Drug Targets. 2013 Feb 1;12(1):23–33.
    1. Skaper S.D., Facci L., Giusti P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol Neurobiol. 2013 Oct;48(2):340–352. doi: 10.1007/s12035-013-8487-6.
    1. De Filippis D., Negro L., Vaia M., Cinelli M.P., Iuvone T. New insights in mast cell modulation by palmitoylethanolamide. CNS Neurol Disord Drug Targets. 2013 Feb 1;12(1):78–83.
    1. Ly H.G., Ceccarini J., Weltens N., Bormans G., Van Laere K., Tack J., Van Oudenhove L. Increased cerebral cannabinoid-1 receptor availability is a stable feature of functional dyspepsia: a [F]MK-9470 PET study. Psychother Psychosom. 2015;84(3):149–158.
    1. Ambrosino P. Functional and biochemical interaction between PPARα receptors and TRPV1 channels: Potential role in PPARα agonists-mediated analgesia. Pharmacol Res. 2014, Sep;87:113–122. doi: 10.1016/j.phrs.2014.06.015.
    1. Vanheel H., Vicario M., Boesmans W., Vanuytsel T., Salvo-Romero E., Tack J., Farré R. Activation of Eosinophils and Mast Cells in Functional Dyspepsia: An Ultrastructural Evaluation. Scientific Reports. 2018;8:5383. doi: 10.1038/s41598-018-23620-y.
    1. Vanheel H., Vicario M., Vanuytsel T., Van Oudenhove L., Martinez C., Keita A.V., Pardon N., Santos J., Söderholm J.D., Tack J., Farré R. Duodenal low-grade inflammation and impaired mucosal integrity in functional dyspepsia patients. Neurogastroenterol. Motil. 2012 24;(Suppl. s2):17–42.
    1. Page A., Brierley J.S.M., Martin C.M., Price M.P., Symonds E., Butler R., Wemmie J.A., Blackshaw L.A. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut. 2005;54:1408–1415.
    1. Russo E.B. Clinical endocannabinoid deficiency [CECD]: can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004;25:31–39.
    1. Kindt S., Tertychnyy A., de Hertogh G., Geboes K., Tack J. Intestinal immune activation in presumed post-infectious functional dyspepsia. Neurogastroenterol Motil. 2009;21:832–e856. doi: 10.1111/j.1365-2982.2009.01299.x.
    1. van Kerkhoven L.A., Laheij R.J., Meineche-Schmidt V., Veldhuyzen-van Zanten S.J., de Wit N.J., Jansen J. Functional dyspepsia: not all roads seem to lead to rome. J Clin Gastroenterol. 2009;43:118–122.
    1. Cremon C., Stanghellini V., Barbaro R.M., Cogliandro R.F., Bellacosa L., Santos J., Vicario M., Pigrau M., Alonso Cotoner C., Lobo B., Azpiroz F., Bruley des Varannes S., Neunlist M., DeFilippis D., Iuvone T., Petrosino S., Di Marzo V., G Barbara G. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment Pharmacol Ther. 2017 Apr;45(7):909–922. doi: 10.1111/apt.13958. Epub 2017 Feb 6.
    1. Rentz A.M., Kahrilas P., Stanghellini V., Tack J., Talley N.J., de la Loge C., Trudeau E., Dubois D., Revicki D.A. Development and psychometric evaluation of the patient assessment of upper gastrointestinal symptom severity index (PAGI-SYM) in patients with functional gastrointestinal disease. Qual Life Res. 2004 Dec;13(10):1737–1749. doi: 10.1007/s11136-004-9567-x.
    1. Sarnelli G., D'Alessandro A., Iuvone T., Capoccia E., Gigli S., Pesce M., Seguella L., Nobile N., Aprea G., Maione F., de Palma G.D., Cuomo R., Steardo L., Esposito G. Palmitoylethanolamide Modulates Inflammation-Associated Vascular Endothelial Growth Factor (VEGF) Signaling via the Akt/mTOR Pathway in a Selective Peroxisome Proliferator-Activated Receptor Alpha (PPAR-α)-Dependent Manner. Plos one. 2016;11(5) doi: 10.1371/journal.pone.0156198.
    1. Sarnelli G., Gigli S., Capoccia E., Iuvone T., Cirillo C., Seguella L., Nobile N., D'Alessandro A., Pesce M., Steardo L., Cuomo R., Esposito G. Antiproliferative and antiangiogenic effects of palmitoylethanolamide in Caco-2 human colon cancer cell involve a selective PPAR-alpha dependent inhibition of Akt/mTOR pathway. Phytother. Res. 2016;30:963–970. doi: 10.1002/ptr.5601.
    1. Turco F., Sarnelli G., Cirillo C., Palumbo I., De Giorgi F., D’Alessandro A., Cammarota M., Giuliano M., Cuomo R. Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells. Gut. 2014;63:105–115. doi: 10.1136/gutjnl-2012-302090.
    1. Ghafouri N., Ghafouri B., Larsson B., Turkina M.V., Karlsson L., Fowler C.J., Gerdle B. High levels of N-palmitoylethanolamide and N-stearoylethanolamide in microdialysate samples from myalgic trapezius muscle in women. PLoS One. 2011;6(11) doi: 10.1371/journal.pone.0027257.

Source: PubMed

Подписаться