Efficacy of Robot-Assisted Gait Training Combined with Robotic Balance Training in Subacute Stroke Patients: A Randomized Clinical Trial

Irene Aprile, Carmela Conte, Arianna Cruciani, Cristiano Pecchioli, Letizia Castelli, Sabina Insalaco, Marco Germanotta, Chiara Iacovelli, Irene Aprile, Carmela Conte, Arianna Cruciani, Cristiano Pecchioli, Letizia Castelli, Sabina Insalaco, Marco Germanotta, Chiara Iacovelli

Abstract

Recently, the use of robotic technology in gait and balance rehabilitation of stroke patients has been introduced, with positive results. The purpose of this study was to evaluate the effectiveness of robotic gait and trunk rehabilitation compared to robotic gait training alone on balance, activities, and participation measures in patients with subacute stroke. The study was a randomized, controlled, single blind, parallel group clinical trial. Thirty-six patients with first ischemic or hemorrhagic stroke event were enrolled, and they were randomized in two groups: Gait Group (GG), where they received only robotic treatment for gait rehabilitation through an end-effector system, and Gait/Trunk Group (GTG) where they performed end-effector gait rehabilitation and balance with a robotic platform, 3 times/week for 12 sessions/month. At the end of the study, there was an improvement in balance ability in both groups. Instead, the lower limb muscle strength and muscle tone significantly improved only in the GTG group, where we found a significant reduction in the trunk oscillations and displacement during dynamic exercises more than the GG group. The robotic platform which was added to the gait robotic treatment offers more intense and controlled training of the trunk that positively influences the tone and strength of lower limb muscles.

Keywords: balance; end-effector device; rehabilitation; robot-assisted gait training; stroke.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Rehabilitation training: Gait Group (GG) and Gait/Trunk Group (GTG).
Figure 2
Figure 2
CONSORT Flow Chart.
Figure 3
Figure 3
Dynamic condition results: between-group statistical analysis (comparison of the percentage changes—%∆GaitGroup vs. %∆Gait/TrunkGroup—obtained in the two groups).

References

    1. Palmieri L., Barchielli A., Cesana G., de Campora E., Goldoni C.A., Spolaore P., Uguccioni M., Vancheri F., Vanuzzo D., Ciccarelli P., et al. The Italian Register of Cardiovascular Diseases: Attack Rates and Case Fatality for Cerebrovascular Events. Cereb. Dis. 2007;24:530–539. doi: 10.1159/000110423.
    1. Swinnen E., Beckwée D., Meeusen R., Baeyens J.P., Kerckhofs E. Does Robot-Assisted Gait Rehabilitation Improve Balance in Stroke Patients? A Systematic Review. Top. Stroke Rehabil. 2014;21:87–100. doi: 10.1310/tsr2102-87.
    1. Langhorne P., Sandercock P., Prasad K. Evidence-Based Practice for Stroke. Lancet Neurol. 2009;8:308–309. doi: 10.1016/S1474-4422(09)70060-2.
    1. Pournajaf S., Goffredo M., Agosti M., Massucci M., Ferro S., Franceschini M. Community Ambulation of Stroke Survivors at 6 Months Follow-up: An Observational Study on Sociodemographic and Sub-Acute Clinical Indicators. Eur. J. Phys. Rehabil. Med. 2019;55:433–441. doi: 10.23736/S1973-9087.18.05489-8.
    1. Aprile I., Di Stasio E., Romitelli F., Lancellotti S., Caliandro P., Tonali P., Gilardi A., Padua L. Effects of Rehabilitation on Quality of Life in Patients with Chronic Stroke. Brain Inj. 2008;22:451–456. doi: 10.1080/02699050802060639.
    1. Aprile I., Di Stasio E., Tonali P., Padua L., Piazzini D.B., Bertolini C. Long-Term Outcome after Stroke Evaluating Health-Related Quality of Life Using Utility Measurement. Stroke. 2006;37:2218–2219. doi: 10.1161/01.STR.0000237142.71578.8b.
    1. Tang A., Eng J.J. Physical Fitness Training After Stroke. Phys. Ther. 2014;94:9–13. doi: 10.2522/ptj.20120331.
    1. Park J., Kim T.H. The Effects of Balance and Gait Function on Quality of Life of Stroke Patients. NeuroRehabilitation. 2019;44:37–41. doi: 10.3233/NRE-182467.
    1. Vostrý M., Zilcher L. Combined therapy for patients after ischemic stroke from the point view of comprehensive rehabilitation. J. Educ. Cult. Soc. 2020;11:119–125. doi: 10.15503/jecs2020.1.119.125.
    1. Vostrý M., Fischer S., Cmorej P.C., Nesvadba M., Peřan D., Šín R. Combined Therapy for Patients after Ischemic Stroke as a Support of Social Adaptability. Neuroendocr. Lett. 2019;40:32304370–32407819.
    1. Morone G., Bragoni M., Iosa M., De Angelis D., Venturiero V., Coiro P., Pratesi L., Paolucci S. Who May Benefit from Robotic-Assisted Gait Training?: A Randomized Clinical Trial in Patients with Subacute Stroke. Neurorehabil Neural Repair. 2011;25:636–644. doi: 10.1177/1545968311401034.
    1. Mehrholz J., Thomas S., Elsner B. Treadmill Training and Body Weight Support for Walking after Stroke. Cochrane Database of Syst. Rev. 2017;2017 doi: 10.1002/14651858.CD002840.pub4.
    1. Pons J.L. Wearable Robots: Biomechatronic Exoskeletons. Wiley; Hoboken, NJ, USA: 2008.
    1. Kelley C.P., Childress J., Boake C., Noser E.A. Proceedings of the Disability and Rehabilitation: Assistive Technology. Volume 8. Taylor & Francis; Abingdon, UK: 2013. Over-Ground and Robotic-Assisted Locomotor Training in Adults with Chronic Stroke: A Blinded Randomized Clinical Trial; pp. 161–168.
    1. Bonnyaud C., Zory R., Boudarham J., Pradon D., Bensmail D., Roche N. Effect of a Robotic Restraint Gait Training versus Robotic Conventional Gait Training on Gait Parameters in Stroke Patients. Expe. Brain Res. 2014;232:31–42. doi: 10.1007/s00221-013-3717-8.
    1. Li L., Ding L., Chen N., Mao Y., Huang D., Li L. Improved Walking Ability with Wearable Robot-Assisted Training in Patients Suffering Chronic Stroke1. Biomed. Mater. Eng. 2015;26:S329–S340. doi: 10.3233/BME-151320.
    1. Lonini L., Shawen N., Scanlan K., Rymer W.Z., Kording K.P., Jayaraman A. Accelerometry-Enabled Measurement of Walking Performance with a Robotic Exoskeleton: A Pilot Study. J. Neuroeng. Rehabil. 2016;13:35. doi: 10.1186/s12984-016-0142-9.
    1. Sale P., Russo E.F., Russo M., Masiero S., Piccione F., Calabrò R.S., Filoni S. Effects on Mobility Training and De-Adaptations in Subjects with Spinal Cord Injury Due to a Wearable Robot: A Preliminary Report. BMC Neurol. 2016;16:1–8. doi: 10.1186/s12883-016-0536-0.
    1. Goffredo M., Guanziroli E., Pournajaf S., Gaffuri M., Gasperini G., Filoni S., Baratta S., Damiani C., Franceschini M., Molteni F. Overground Wearable Powered Exoskeleton for Gait Training in Subacute Stroke Subjects: Clinical and Gait Assessments. Eur. J. Phys. Rehabil. Med. 2019;55:710–721. doi: 10.23736/S1973-9087.19.05574-6.
    1. Cho M.K., Kim J.H., Chung Y., Hwang S. Treadmill Gait Training Combined with Functional Electrical Stimulation on Hip Abductor and Ankle Dorsiflexor Muscles for Chronic Hemiparesis. Gait Posture. 2015;42:73–78. doi: 10.1016/j.gaitpost.2015.04.009.
    1. Aprile I., Iacovelli C., Padua L., Galafate D., Criscuolo S., Gabbani D., Cruciani A., Germanotta M., di Sipio E., de Pisi F., et al. Efficacy of Robotic-Assisted Gait Training in Chronic Stroke Patients: Preliminary Results of an Italian Bi-Centre Study. NeuroRehabilitation. 2017;41:775–782. doi: 10.3233/NRE-172156.
    1. Dundar U., Toktas H., Solak O., Ulasli A., Eroglu S. A Comparative Study of Conventional Physiotherapy versus Robotic Training Combined with Physiotherapy in Patients with Stroke. Top. Stroke Rehabil. 2014;21:453–461. doi: 10.1310/tsr2106-453.
    1. Hornby T.G., Campbell D.D., Kahn J.H., Demott T., Moore J.L., Roth H.R. Enhanced Gait-Related Improvements after Therapist- versus Robotic-Assisted Locomotor Training in Subjects with Chronic Stroke: A Randomized Controlled Study. Stroke. 2008;39:1786–1792. doi: 10.1161/STROKEAHA.107.504779.
    1. Cattaneo D., Gervasoni E., Pupillo E., Bianchi E., Aprile I., Imbimbo I., Russo R., Cruciani A., Turolla A., Jonsdottir J., et al. Educational and Exercise Intervention to Prevent Falls and Improve Participation in Subjects With Neurological Conditions: The NEUROFALL Randomized Controlled Trial. Front. Neurol. 2019;10:865. doi: 10.3389/fneur.2019.00865.
    1. Beghi E., Gervasoni E., Pupillo E., Bianchi E., Montesano A., Aprile I., Agostini M., Rovaris M., Cattaneo D., Iacobone G., et al. Prediction of Falls in Subjects Suffering From Parkinson Disease, Multiple Sclerosis, and Stroke. Arch. Phys. Med. Rehabil. 2018;99:641–651. doi: 10.1016/j.apmr.2017.10.009.
    1. Giovannini S., Brau F., Galluzzo V., Santagada D.A., Loreti C., Biscotti L., Laudisio A., Zuccalà G., Bernabei R. Falls among Older Adults: Screening, Identification, Rehabilitation, and Management. Applied Sciences. 2022;12:7934. doi: 10.3390/app12157934.
    1. De Athayde Costa E Silva A., Viana Da Cruz Júnior A.T., Cardoso Do Nascimento N.I., Andrade Candeira S.R., Do Socorro Soares Cardoso Almeida A., Santana De Castro K.J., Costa De Lima R., Generoso Campos Pinho Barroso T., Da Silva Souza G., Callegari B. Positive Balance Recovery in Ischemic Post-Stroke Patients with Delayed Access to Physical Therapy. Biomed. Res. Int. 2020;2020:9153174 . doi: 10.1155/2020/9153174.
    1. Winstein C.J., Stein J., Arena R., Bates B., Cherney L.R., Cramer S.C., Deruyter F., Eng J.J., Fisher B., Harvey R.L., et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2016;47:e98–e169. doi: 10.1161/STR.0000000000000098.
    1. Hobbs B., Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front. Neurorobot. 2020;14:19. doi: 10.3389/fnbot.2020.00019.
    1. Olenšek A., Zadravec M., Rudolf M., Humar M.G., Tomšič I., Bizovičar N., Goljar N., Matjačić Z. A Novel Approach to Robot-Supported Training of Symmetry, Propulsion and Balance during Walking after Stroke: A Case Study; Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics; Pisa, Italy. 20–22 February 2006; pp. 408–413.
    1. Matjačić Z., Zadravec M., Olenšek A. Feasibility of Robot-Based Perturbed-Balance Training during Treadmill Walking in a High-Functioning Chronic Stroke Subject: A Case-Control Study. J. Neuroeng. Rehabil. 2018;15:32. doi: 10.1186/s12984-018-0373-z.
    1. Saglia J.A., De Luca A., Squeri V., Ciaccia L., Sanfilippo C., Ungaro S., Michieli L. De Design and Development of a Novel Core, Balance and Lower Limb Rehabilitation Robot: Hunova®; Proceedings of the IEEE International Conference on Rehabilitation Robotics; Toronto, ON, Canada. 24–28 June 2019; pp. 417–422.
    1. De Luca A., Squeri V., Barone L.M., Vernetti Mansin H., Ricci S., Pisu I., Cassiano C., Capra C., Lentino C., de Michieli L., et al. Dynamic Stability and Trunk Control Improvements Following Robotic Balance and Core Stability Training in Chronic Stroke Survivors: A Pilot Study. Front. Neurol. 2020;11:494. doi: 10.3389/fneur.2020.00494.
    1. Hesse S., Mach H., Fröhlich S., Behrend S., Werner C., Melzer I. An Early Botulinum Toxin A Treatment in Subacute Stroke Patients May Prevent a Disabling Finger Flexor Stiffness Six Months Later: A Randomized Controlled Trial. Clin. Rehabil. 2012;26:237–245. doi: 10.1177/0269215511421355.
    1. Paanalahti M., Lundgren-Nilsson Å., Arndt A., Sunnerhagen K.S. Applying the Comprehensive International Classification of Functioning, Disability and Health Core Sets for Stroke Framework to Stroke Survivors Living in the Community. J. Rehabil. Med. 2013;45:331–340. doi: 10.2340/16501977-1110.
    1. Franceschini M., Colombo R., Posteraro F., Sale P. A Proposal for an Italian Minimum Data Set Assessment Protocol for Robot-Assisted Rehabilitation: A Delphi Study. Eur. J. Phys. Rehabil. Med. 2015;51:745–753. doi: 10.2/JQUERY.MIN.JS.
    1. Aprile I., Iacovelli C., Goffredo M., Cruciani A., Galli M., Simbolotti C., Pecchioli C., Padua L., Galafate D., Pournajaf S., et al. Efficacy of End-Effector Robot-Assisted Gait Training in Subacute Stroke Patients: Clinical and Gait Outcomes from a Pilot Bi-Centre Study. NeuroRehabilitation. 2019;45:201–212. doi: 10.3233/NRE-192778.
    1. Morone G., Paolucci S., Cherubini A., de Angelis D., Venturiero V., Coiro P., Iosa M. Robot-Assisted Gait Training for Stroke Patients: Current State of the Art and Perspectives of Robotics. Neuropsychiatr. Dis. Treat. 2017;13:1303–1311. doi: 10.2147/NDT.S114102.
    1. Van Criekinge T., Saeys W., Vereeck L., de Hertogh W., Truijen S. Are Unstable Support Surfaces Superior to Stable Support Surfaces during Trunk Rehabilitation after Stroke? A Systematic Review. Disabil. Rehabil. 2018;40:1981–1988. doi: 10.1080/09638288.2017.1323030.
    1. Yom C., Cho H.Y., Lee B.H. Effects of Virtual Reality-Based Ankle Exercise on the Dynamic Balance, Muscle Tone, and Gait of Stroke Patients. J. Phys. Sci. 2015;27:845–849. doi: 10.1589/jpts.27.845.
    1. Thompson M., Medley A. Forward and Lateral Sitting Functional Reach in Younger, Middle-Aged, and Older Adults. J. Geriatr. Phys. 2007;30:43–48. doi: 10.1519/00139143-200708000-00002.
    1. Masiero S., Avesani R., Armani M., Verena P., Ermani M. Predictive Factors for Ambulation in Stroke Patients in the Rehabilitation Setting: A Multivariate Analysis. Clin. Neurol. Neurosurg. 2007;109:763–769. doi: 10.1016/j.clineuro.2007.07.009.
    1. Tyson S.F., Hanley M., Chillala J., Selley A.B., Tallis R.C. The Relationship between Balance, Disability, and Recovery after Stroke: Predictive Validity of the Brunel Balance Assessment. Neurorehabil Neural Repair. 2007;21:341–346. doi: 10.1177/1545968306296966.
    1. Kirker S.G.B., Jenner J.R., Simpson D.S., Wing A.M. Changing Patterns of Postural Hip Muscle Activity during Recovery from Stroke. Clin. Rehabil. 2000;14:618–626. doi: 10.1191/0269215500cr370oa.
    1. Seo K.C., Park S.H., Park K. The Effects of Stair Gait Training Using Proprioceptive Neuromuscular Facilitation on Stroke Patients’ Dynamic Balance Ability. J. Phys. Sci. 2015;27:1459–1462. doi: 10.1589/jpts.27.1459.
    1. Kim S.Y., Yang L., Park I.J., Kim E.J., Park M.S., You S.H., Kim Y.H., Ko H.Y., Shin Y.I. Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up. IEEE Trans. Neural. Syst. Rehabil. Eng. 2015;23:636–642. doi: 10.1109/TNSRE.2015.2404936.
    1. Kim H.Y., Shin J.H., Yang S.P., Shin M.A., Lee S.H. Robot-Assisted Gait Training for Balance and Lower Extremity Function in Patients with Infratentorial Stroke: A Single-Blinded Randomized Controlled Trial. J. Neuroeng. Rehabil. 2019;16:1–12. doi: 10.1186/s12984-019-0553-5.

Source: PubMed

Подписаться