このページは自動翻訳されたものであり、翻訳の正確性は保証されていません。を参照してください。 英語版 ソーステキスト用。

Real-World Benefit From Directional Hearing Aids

2016年11月18日 更新者:Vanderbilt University

Real-World Benefit From Directional Microphone Hearing Aids

Directional microphone hearing aids have been shown to provide benefit for individuals with hearing loss in a number of laboratory experiments. However, few studies have investigated the real-world, subject-reported benefit from these hearing aids, and even fewer have examined directional hearing aid benefit across varying degrees of hearing loss. This study will summarize data from a three-year, multi-faceted study of directional hearing aid benefit. Ninety four subjects were divided into three hearing loss groups (normal-to-moderate, mild-to-moderately-severe, and moderate-to-profound). These subjects were then fit with experimental hearing aids set to either directional or omnidirectional mode to determine if significant differences were present in hearing aid outcomes (both subjective and objective). Both subject and experimenter were blinded to the hearing aid settings. Following one month of use in each experimental setting, subjects completed: probe microphone measurements, speech understanding in noise testing, use questionnaires, subjective benefit scales, and satisfaction scales. At the conclusion of the study, subjects rated their preferences for the experimental settings in quiet, noise and overall. Both objective measures, as well as subjective data, were analyzed across hearing aid and hearing loss conditions.

調査の概要

詳細な説明

Subjects- 105 subjects were recruited for participation in this study, thirty-five in each of three hearing loss groups. Subjects were assigned to the three groups according to the severity of their hearing losses. Group 1 (mild) subjects exhibited normal sloping to moderately severe SNHL, with Pure Tone Averages (PTAs) at 500, 1000, and 2000 Hz of less than 35 dB HL. Group 2 (moderate) consisted of subjects with mild sloping to moderately severe SNHL with PTAs of 35 to 50 dB HL. Group 3 (severe) subjects exhibited moderately-severe, sloping to severe-profound SNHL, with PTAs of greater than 50. All subjects had sloping hearing loss defined as at least a 20 dB average difference between 3000 Hz and 500 Hz. (Due to subject drop-out, the final data consisted of 32 subjects in the mild group, 33 in moderate group, and 29 in the severe group)

Hearing status was assessed by means of audiometric pure-tone and speech recognition testing in a group of previous hearing aid users. Normal middle ear function was verified by means of immittance measures. All subjects exhibited absence of significant air-bone gap at any frequency (<10 dB) and normal tympanograms defined as compensated static admittance between 0.25 and 2.5 mmho measured from the positive tail with tympanometric peak pressure between -150 and +100 daPa. All subjects were service-connected veterans who are eligible for care and amplification through the VA Audiology service. All subjects were previous wearers of binaural hearing aids, with a minimum daily usage requirement of 4 hours/day. All subjects were previous users of output compression hearing aids from the same manufacturer.

All subjects participated in approximately eight to ten hours of testing over the course of four visits. At the first visit, subjects received a hearing test, unaided speech understanding in noise measures, and aided speech understanding in noise with their current hearing aids. Additionally, earmold impressions were obtained for the experimental hearing aids. At the second visit, subjects completed the first set of subjective measures for the unaided and current (own) hearing aid conditions. Subjects were then fit with digitally programmable user-selectable directional/omnidirectional hearing aids in the first of two experimental settings (randomly selected between directional/omnidirectional and omnidirectional only), which they used for approximately one month before returning for the next test session. At the third visit, subjects again completed the entire test battery for the experimental hearing aid worn during the last month. The experimental hearing aid was then programmed for the other condition (directional/omnidirectional or omnidirectional only). At the fourth and final visit, subjects completed the entire test battery for this final hearing aid condition. Additionally, at the final visit, subjects completed a preference questionnaire.

Speech understanding in noise tests:

The Connected Sentence Test (CST) and the Hearing In Noise Test (HINT) were administered to all subjects. An investigator in the room with the subject scored the test. The investigator was blinded to the experimental settings of the hearing aids to control for experimenter bias. The CST is a test of speech intelligibility for everyday speech presented at a fixed SNR. The test consisted of 24 pairs of speech passages produced conversationally. The subject's task was to repeat all words of each test sentence. Each passage included 25 key words that were scored correct or incorrect. Subject scores from 1 pair of passages were averaged to obtain an intelligibility score for each experimental condition. Data from Pearsons et al. indicate that real-world SNRs in relatively noisy environments range from approximately +4 dB to -1 dB. Consequently, the tests were administered at a +3 dB SNR, which represented a relatively difficult real-world listening situation. This SNR was chosen to minimize floor and ceiling effects for all subject groups based on a previous investigation in our laboratory, given the steep performance-intensity function that has been reported for the CST.

The HINT was administered as a second test of sentence intelligibility in noise. For this investigation, two blocks of ten sentences were used for each condition. Listeners were required to repeat sentences spoken by a male talker in the presence of a speech-shaped noise, which was presented at a fixed level of 65 dBA. The level of the speech stimuli was adjusted adaptively until a Speech Reception Threshold (SRT) was determined. The SRT was defined as the SNR necessary for a listener to recognize the speech materials correctly 50 % of the time. Correct identification of each sentence was based on proper repetition of all words of the sentence, with minor exceptions. These exceptions related to the fact that small substitutions in verb tense and the articles "a" and "the" were allowed without scoring a sentence as incorrect. Presentation level of the sentences was adjusted based on the subjects' responses (an incorrect response raised the level; a correct response lowered the level for the next sentence). The level was varied in 4 dB steps for the first 5 trials, and 2 dB steps for the final 15 trials.

Speech in noise test environment:

The arrangement of the speakers for the speech-in-noise testing is shown in figure 1. Both of the speech-in-noise tests were administered in a conference room (5.05 X 4.71 X 2.60 meters) with moderate reverberation (average reverberation time Rt60: 482 ms, measured for octave frequencies from 250 through 4000 Hz, under experimental conditions with 2 people in the room). Each subject was seated in the center of the room with an eight-speaker configuration for the presentation of the speech and noise stimuli. Speech will be presented from a point-source loudspeaker (Tannoy System 600, fused-concentric driver) at a 0º azimuth. Uncorrelated noise was delivered from the seven bipolar loudspeakers (Definitive Technologies BP-2X) spaced equally about the listener [approximately 25, 76, 128, 180, 232, 284, 335]. The use of bipolar loudspeakers allowed for a more diffuse source position in comparison to standard, front-firing loudspeakers. All speakers were equidistant (1.5m) from the subject's head. Speech and noise levels were controlled using a Pentium IV class computer and an eight-channel level controller (Ashly VCM-88).

Hearing aid fitting protocol:

Hearing aid gain was determined using the National Acoustics Laboratory-Revised (NAL-R) prescriptive targets and verified using real-ear (Fonix 6500) measurements. Hearing aid frequency-gain parameters were adjusted so that the measured real ear aided response matched the target response as closely as possible for octave frequencies from 500 to 4000 Hz for both omnidirectional and directional modes. The matches to target are reported in the results. The processing strategy of the experimental hearing aids was set as output compression to match each subject's previous hearing aids. Targets were matched for a 65 dB SPL composite noise input. A real ear saturation response was obtained with a 90 dB SPL broadband input to ensure that high-level stimuli did not exceed listener discomfort levels, and the hearing aid output was adjusted accordingly. In order to maintain a double-blind experiment, the hearing aid programming, fitting, and real ear measurements were performed by one investigator who recorded how the hearing aid was set (omnidirectional or directional) for each visit. This investigator kept these data until the subject completed all aspects of the study. Furthermore, the investigator who programmed and fit the hearing aids was not involved in further data collection with that subject.

Since all subjects were previous users of binaural amplification, a brief orientation to the use of the experimental hearing aids should be sufficient. Subjects were issued a remote control with a volume control and three program buttons. Program 1 was set with the default setting (directional or omnidirectional). In order to ensure subject safety, an omnidirectional program was included in program two across both conditions; however, subjects were instructed only to use program two in situations where it was necessary to hear sounds from all angles equally (e.g. crossing the street in traffic, etc.). Program three on the remote control was set to mute, so that subjects could use only the first two programs. Subjects were be given identical instructions for both settings (omnidirectional and directional) and the investigator who gave the instructions did not know which setting was currently in the subject's hearing aids. Subjects were told that the hearing aids are likely to work best in noise if they could position themselves so that the signal of interest is in front of them and the interfering noise behind. Subjects were instructed on cleaning, care, battery usage, and volume control adjustment. Subjects were asked to wear the experimental hearing aids as much as possible during waking hours, minimally 6 hours/day. Subjects were asked to log their daily hearing aid use on a log sheet that will be provided to verify that they met the 6 hour/day. Additionally, subjects recorded how much time each day was spent in each of the two programs.

Subjective measures:

PHAB- The investigator who administered the subjective measures was masked as to the experimental settings of the hearing aids. All subjects completed the Profile of Hearing Aid Benefit (PHAB) questionnaire for each condition: unaided, previous aid, experimental directional, and experimental omnidirectional. The PHAB is a 66-item inventory that was developed for research usage to generate a measure of hearing aid benefit. Subjects completed the 66 items once for unaided listening and once for each aided condition. The test instrument was scored based on the benefit provided for aided versus unaided conditions.

SADL- All subjects completed the Satisfaction with Amplification in Daily Living (SADL) questionnaire for each of the three aided conditions. The SADL was designed to quantify satisfaction with hearing aids. This scale consists of 15 items in four subscales: positive effects of amplification, service and costs, negative features, and personal image. Subjects respond to questions about their general opinions of wearing hearing aids. For the current study, the 3 questions on cost and service were omitted, because the subjects did not pay for the hearing aids, only wore the experimental hearing aids for one month before completing the survey.

Preference questionnaire- At the conclusion of a subject's involvement in the study, he/she was asked which hearing aid was preferred for quiet and noisy environments as well as if she/he had an overall preference for any of the three hearing aid conditions.

研究の種類

介入

入学 (実際)

105

段階

  • 適用できない

連絡先と場所

このセクションには、調査を実施する担当者の連絡先の詳細と、この調査が実施されている場所に関する情報が記載されています。

研究場所

    • Tennessee
      • Nashville、Tennessee、アメリカ、37232
        • Department of Veterans Affairs Medical Center

参加基準

研究者は、適格基準と呼ばれる特定の説明に適合する人を探します。これらの基準のいくつかの例は、人の一般的な健康状態または以前の治療です。

適格基準

就学可能な年齢

  • 大人
  • 高齢者

健康ボランティアの受け入れ

はい

受講資格のある性別

全て

説明

Inclusion Criteria:

  • 105 subjects were recruited for participation in this study, thirty-five in each of three hearing loss groups.
  • Subjects were assigned to the three groups according to the severity of their hearing losses.
  • Group 1 (mild) subjects exhibited normal sloping to moderately severe SNHL, with Pure Tone Averages (PTAs) at 500, 1000, and 2000 Hz of less than 35 dB HL.
  • Group 2 (moderate) consisted of subjects with mild sloping to moderately severe SNHL with PTAs of 35 to 50 dB HL.
  • Group 3 (severe) subjects exhibited moderately-severe, sloping to severe-profound SNHL, with PTAs of greater than 50.

研究計画

このセクションでは、研究がどのように設計され、研究が何を測定しているかなど、研究計画の詳細を提供します。

研究はどのように設計されていますか?

デザインの詳細

  • 主な目的:処理
  • 割り当て:ランダム化
  • 介入モデル:クロスオーバー割り当て
  • マスキング:ダブル

この研究は何を測定していますか?

主要な結果の測定

結果測定
Probe microphone measurements
Speech understanding in noise
Hearing aid use time
Hearing aid benefit
Hearing aid preference
Hearing aid satisfaction

協力者と研究者

ここでは、この調査に関係する人々や組織を見つけることができます。

スポンサー

捜査官

  • 主任研究者:David Gnewikow, Ph.D.、Vanderbilt University

出版物と役立つリンク

研究に関する情報を入力する責任者は、自発的にこれらの出版物を提供します。これらは、研究に関連するあらゆるものに関するものである可能性があります。

研究記録日

これらの日付は、ClinicalTrials.gov への研究記録と要約結果の提出の進捗状況を追跡します。研究記録と報告された結果は、国立医学図書館 (NLM) によって審査され、公開 Web サイトに掲載される前に、特定の品質管理基準を満たしていることが確認されます。

主要日程の研究

研究開始

2001年4月1日

一次修了 (実際)

2004年3月1日

研究の完了 (実際)

2004年3月1日

試験登録日

最初に提出

2006年12月5日

QC基準を満たした最初の提出物

2007年2月21日

最初の投稿 (見積もり)

2007年2月22日

学習記録の更新

投稿された最後の更新 (見積もり)

2016年11月22日

QC基準を満たした最後の更新が送信されました

2016年11月18日

最終確認日

2016年11月1日

詳しくは

この情報は、Web サイト clinicaltrials.gov から変更なしで直接取得したものです。研究の詳細を変更、削除、または更新するリクエストがある場合は、register@clinicaltrials.gov。 までご連絡ください。 clinicaltrials.gov に変更が加えられるとすぐに、ウェブサイトでも自動的に更新されます。

3
購読する