このページは自動翻訳されたものであり、翻訳の正確性は保証されていません。を参照してください。 英語版 ソーステキスト用。

Decoding Pain Sensitivity in Migraine With Multimodal Brainstem-based Neurosignature

2021年4月9日 更新者:Taipei Veterans General Hospital, Taiwan
Migraine is a highly prevalent and disabling neurological disease, which has a tremendous impact on sufferers, healthcare systems, and the economy. According to the 2016 WHO report, migraine is the second leading cause of years lived with disability, greater than all other neurological diseases combined. Yet, the treatment in migraine is far from optimum; the sufferers often abuse painkillers and complicated with medication overuse headache. Migraine is characterized by the hypersensitivity of the sensory system, potentially attributed to dysfunctional pain modulatory networks located in the deep brain structures, particularly the brainstem. However, the current understanding of these deeply seated, dysregulated pain modulatory circuits in migraine is limited due to technological constraints. Besides, studies with an in-depth analysis of the clinical manifestations (i.e., deep phenotyping) are lacking, and there is no corresponding animal model readily available for translational research. In this project, the investigators propose a multimodal approach to address these issues by applying the technologies and platforms developed by our team to explore the correlation between pain sensitivity and dysregulated connectivities from brainstem to other brain regions. In this four-year project, the investigators will recruit 400 migraine patients and 200 healthy subjects. The investigators aim at decomposing the key brainstem mechanisms underlying dysmodulated pain sensitivity in migraine from 5 comprehensive perspectives: (1) clinical deep phenotyping, (2) high-resolution brainstem structural MRI and functional connectivity analysis, (3) innovative brainstem EEG signal detecting technique, (4) multimodal data fusion platform with neural network analysis, and (5) ultrahigh-resolution brainstem-based connectomes, intravital manipulations and recording, and connectome-sequencing in animal models. Moreover, the investigators will collaborate with Taiwan Semiconductor Research Institute to develop a wearable high-density EEG equipment, integrated with a System-on-Chip capable of edge-computing the signal using algorithms derived from our brainstem decoding platform. The ultimate goal is to build a real-time brainstem decoding system for clinical application.

調査の概要

状態

募集

条件

詳細な説明

Migraine causes a tremendous disease burden around the world. Migraine is one of the most prevalent neurological disorders and is reported by the WHO as the second leading cause of disease-related disabilities globally (No. 1 in the population under the 50s). There has been no much change in the ranking of disability for migraine for the past two decades, reflecting an unmet need for better treatment options. Even with the recently available calcitonin-gene related peptide (CGRP)-based treatment, the treatment response versus placebo is still disappointing (6.4-17.6% in acute treatment, 10.2-23.7% in preventive treatment). There is an urgent need to push further the current understanding of the pathophysiology of migraine, based on which novel treatment strategies can be developed. The lack of appropriate research tools hinders the acceleration of migraine research. As a neurological disorder, many neuroimaging studies have been focused on brain alterations; however, the majority focused on the cerebrum. Limited by the currently available neuroimaging and electrophysiological technologies, the deep brain structures especially the brainstem involved in the sensory and nociceptive neurotransmission in migraine, such as the trigeminal nucleus, could only be investigated to a limited extent. Obviously, there is an unmet need for novel technologies that can be used to delineate structural or functional alterations in the brainstem. Elucidation of the role of these deep brain structures may fill the gap in the current understanding of migraine pathophysiology, and pave the way to precise and efficient treatment. Studies restricted to single methodologies are insufficient for the complexity of migraine. Migraine is a complex and dynamic disorder. However, most prior studies were limited to single methodologies and provided limited insights into such a multifaceted disorder. Studies with an integrated approach are lacking. An exhaustive examination of the discrete components of a phenotype, i.e., 'deep phenotyping', can help understand different aspects of its clinical manifestations, and facilitate patient classification. Coupled with neuroimaging and electrophysiological research methodologies, a multi-modal decoding approach would help identify a constellation of migraine-specific biosignatures, rather than just one. This can not only provide clues to decipher migraine pathophysiology in various dimensions but also serve as the basis of the development of a prediction algorithm that can be applied in clinical practice. To pursue the overall goal, the present project schemes as a composition of the following 5 aims:

Aim 1: Deep phenotyping for sensory processing in patients with migraine Aim 2: Brainstem-based functional and structural connectomics in migraine Aim 3: Capturing brainstem electro-neurosignature in migraine Aim 4: Constructing a data fusion platform and developing an EEG cap with a built-in analytic chip Aim 5: Exploring brainstem-based connectome sequencing in migraine animal model

研究の種類

介入

入学 (予想される)

600

段階

  • フェーズ 4

連絡先と場所

このセクションには、調査を実施する担当者の連絡先の詳細と、この調査が実施されている場所に関する情報が記載されています。

研究連絡先

研究連絡先のバックアップ

研究場所

      • Taipei、台湾、112
        • 募集
        • Headache Center, Teipei Veterans General Hospital
        • コンタクト:
        • コンタクト:

参加基準

研究者は、適格基準と呼ばれる特定の説明に適合する人を探します。これらの基準のいくつかの例は、人の一般的な健康状態または以前の治療です。

適格基準

就学可能な年齢

20年~65年 (大人、高齢者)

健康ボランティアの受け入れ

いいえ

受講資格のある性別

全て

説明

Migraine:

Inclusion criteria:

  1. fulfill the diagnostic criteria of migraine in ICHD-3,
  2. 20-65 yrs,
  3. understand the study design and willing to join the study
  4. at least four headache days per month,
  5. the onset of headache is prior to 50 yrs.,
  6. normal neurological examination findings.

Exclusion criteria:

  1. history or family history of epilepsy,
  2. taking migraine prophylactics,
  3. women who are breastfeeding or pregnant,
  4. severe psychological disorders, including major depression, PTSD, personality disorders, bipolar disorder, schizophrenia,
  5. medical, neurological or psychiatric disease discovered by the researcher that would hinder the research,
  6. contraindications for MR scan (pacemaker, claustrophobia, stent, metal implants…).

Healthy:

Inclusion criteria:

  1. 20-65 yrs,
  2. normal neurological examination findings,
  3. understand the study design and willing to join the study.

Exclusion criteria:

  1. history or family history of epilepsy,
  2. women who are breastfeeding or pregnant,
  3. severe psychological disorders, including major depression, PTSD, personality disorders, bipolar disorder, schizophrenia,
  4. medical, neurological or psychiatric disease discovered by the researcher that would hinder the research,
  5. contraindications for MR scan (pacemaker, claustrophobia, stent, metal implants…),
  6. history of headache will be included (the tension-type headache occurs < 1 time per month is allowed)

研究計画

このセクションでは、研究がどのように設計され、研究が何を測定しているかなど、研究計画の詳細を提供します。

研究はどのように設計されていますか?

デザインの詳細

  • 主な目的:処理
  • 割り当て:非ランダム化
  • 介入モデル:並列代入
  • マスキング:なし(オープンラベル)

武器と介入

参加者グループ / アーム
介入・治療
実験的:patients with migraine
patient with migraine will be prescribed with flunarizine or routine clinical care per clinician's decision based on the condition of each individual patient
The flunarizine will be given per clinical routine
他の:healthy control
no intervention for healthy control

この研究は何を測定していますか?

主要な結果の測定

結果測定
メジャーの説明
時間枠
Clinical change after treatment (1) headache frequency
時間枠:6 months
clinical change (headache frequency) after treatment unit: attacks per month analysis: comparing the mean headache frequency in each month after treatment (M1/M2/M3/M4/M5/M6) to that before treatment (M0)
6 months
Clinical change after treatment (2) headache intensity
時間枠:6 months
clinical change (headache intensity) after treatment unit: NRS (numeric rating scale, 0-10) analysis: comparing the mean headache intensity in each month after treatment (M1/M2/M3/M4/M5/M6) to that before treatment (M0)
6 months
Clinical change after treatment (3) headache duration
時間枠:6 months
clinical change (headache duration) after treatment unit: hours/day analysis: comparing the mean headache duration (hours/day) in each month after treatment (M1/M2/M3/M4/M5/M6) to that before treatment (M0)
6 months

二次結果の測定

結果測定
メジャーの説明
時間枠
EEG change after treatment (1) Linear analysis of EEG before and after treatment
時間枠:12 months

power spectral density change of EEG before and after treatment

• Four EEG sessions will be arranged. The first one is done before treatment, and the 2nd/3rd/4th one will be done after a 3-month/6-month/12-month treatment course, respectively.

12 months
EEG change after treatment (2) Nonlinear analysis of EEG before and after treatment
時間枠:12 months

functional connectivity change of EEG before and after treatment

• Four EEG sessions will be arranged. The first one is done before treatment, and the 2nd/3rd/4th one will be done after a 3-month/6-month/12-month treatment course, respectively.

12 months
EEG change after treatment (3) Nonlinear analysis of EEG before and after treatment
時間枠:12 months

evoked potential amplitude change of EEG before and after treatment

• Four EEG sessions will be arranged. The first one is done before treatment, and the 2nd/3rd/4th one will be done after a 3-month/6-month/12-month treatment course, respectively.

12 months
Sensory threshold change after treatment
時間枠:12 months

Using quantitative sensory testing (QST) to evaluate the sensory threshold before and after treatment

• Four standard QST sessions will be arranged. The first one is done before treatment, and the 2nd/3rd/4th one will be done after a 3-month/6-month/12-month treatment course, respectively.

12 months
fMRI change after treatment (1)
時間枠:12 months

functional connectivity change of fMRI before and after treatment

• Three fMRI sessions will be arranged. The first one is done before treatment, and the 2nd/3rd one will be done after a 6-month/12-month treatment course, respectively.

12 months
fMRI change after treatment (2)
時間枠:12 months

activation change of fMRI before and after treatment

• Three fMRI sessions will be arranged. The first one is done before treatment, and the 2nd/3rd one will be done after a 6-month/12-month treatment course, respectively.

12 months
MRI change after treatment (1)
時間枠:12 months

VBM changes of MRI before and after treatment

• Three MRI sessions will be arranged. The first one is done before treatment, and the 2nd/3rd one will be done after a 6-month/12-month treatment course, respectively.

12 months
MRI change after treatment (2)
時間枠:12 months

SBM changes of MRI before and after treatment

• Three MRI sessions will be arranged. The first one is done before treatment, and the 2nd/3rd one will be done after a 6-month/12-month treatment course, respectively.

12 months
Humoral change after treatment (1)
時間枠:12 months

Test the cytokine level using ELISA kit to evaluate the status before and after treatment

• Four blood test sessions and saliva collection will be arranged. The first one is done before treatment, and the 2nd/3rd/4th one will be done after a 3-month/6-month/12-month treatment course, respectively.

12 months
Humoral change after treatment (2)
時間枠:12 months

Test the hormone level using ELISA kit to evaluate the status before and after treatment

• Four blood test sessions and saliva collection will be arranged. The first one is done before treatment, and the 2nd/3rd/4th one will be done after a 3-month/6-month/12-month treatment course, respectively.

12 months
Genetic variance
時間枠:5 minutes

Genetic variants associated with baseline demographics and treatment response as assessed with genome-wide association study using the genotyping data derived from the Axiom Genome-wide array

• Blood draw before the treatment to extract DNA for further sequencing

5 minutes

協力者と研究者

ここでは、この調査に関係する人々や組織を見つけることができます。

研究記録日

これらの日付は、ClinicalTrials.gov への研究記録と要約結果の提出の進捗状況を追跡します。研究記録と報告された結果は、国立医学図書館 (NLM) によって審査され、公開 Web サイトに掲載される前に、特定の品質管理基準を満たしていることが確認されます。

主要日程の研究

研究開始 (実際)

2021年2月26日

一次修了 (予想される)

2024年12月1日

研究の完了 (予想される)

2025年12月1日

試験登録日

最初に提出

2020年11月25日

QC基準を満たした最初の提出物

2021年1月8日

最初の投稿 (実際)

2021年1月11日

学習記録の更新

投稿された最後の更新 (実際)

2021年4月14日

QC基準を満たした最後の更新が送信されました

2021年4月9日

最終確認日

2021年4月1日

詳しくは

本研究に関する用語

医薬品およびデバイス情報、研究文書

米国FDA規制医薬品の研究

いいえ

米国FDA規制機器製品の研究

いいえ

米国で製造され、米国から輸出された製品。

いいえ

この情報は、Web サイト clinicaltrials.gov から変更なしで直接取得したものです。研究の詳細を変更、削除、または更新するリクエストがある場合は、register@clinicaltrials.gov。 までご連絡ください。 clinicaltrials.gov に変更が加えられるとすぐに、ウェブサイトでも自動的に更新されます。

3
購読する