Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality

Ismail Hamad, Hamada AbdElgawad, Soad Al Jaouni, Gaurav Zinta, Han Asard, Sherif Hassan, Momtaz Hegab, Nashwa Hagagy, Samy Selim, Ismail Hamad, Hamada AbdElgawad, Soad Al Jaouni, Gaurav Zinta, Han Asard, Sherif Hassan, Momtaz Hegab, Nashwa Hagagy, Samy Selim

Abstract

Date palm is an important crop, especially in the hot-arid regions of the world. Date palm fruits have high nutritional and therapeutic value and possess significant antibacterial and antifungal properties. In this study, we performed bioactivity analyses and metabolic profiling of date fruits of 12 cultivars from Saudi Arabia to assess their nutritional value. Our results showed that the date extracts from different cultivars have different free radical scavenging and anti-lipid peroxidation activities. Moreover, the cultivars showed significant differences in their chemical composition, e.g., the phenolic content (10.4-22.1 mg/100 g DW), amino acids (37-108 μmol·g-1 FW) and minerals (237-969 mg/100 g DW). Principal component analysis (PCA) showed a clear separation of the cultivars into four different groups. The first group consisted of the Sokary, Nabtit Ali cultivars, the second group of Khlas Al Kharj, Khla Al Qassim, Mabroom, Khlas Al Ahsa, the third group of Khals Elshiokh, Nabot Saif, Khodry, and the fourth group consisted of Ajwa Al Madinah, Saffawy, Rashodia, cultivars. Hierarchical cluster analysis (HCA) revealed clustering of date cultivars into two groups. The first cluster consisted of the Sokary, Rashodia and Nabtit Ali cultivars, and the second cluster contained all the other tested cultivars. These results indicate that date fruits have high nutritive value, and different cultivars have different chemical composition.

Keywords: amino acids; antimicrobial; antioxidants; date palm; lipid peroxidation; metabolomics; minerals; organic acids; phenolics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Antioxidant metabolites content: (a) Total glutathione (GSH); (b) total ascorbate (ASC); (c) total tocopherols of 12 Saudi date cultivars.
Figure 2
Figure 2
Principal component analysis (PCA) of metabolites in 12 Saudi date cultivars. Bi-plot of principle component 1 (42.7%) and principle component 2 (23.5%).
Figure 3
Figure 3
Heat maps of the metabolite profiles of 12 Saudi date cultivars. A total of 42 metabolites were quantified by high performance liquid chromatography for each cultivar, including amino acids, organic acids, sugars, phenolic compounds, glutathione and vitamins.
Figure 4
Figure 4
Antioxidant activity: DPPH scavenging activity and anti-lipid peroxidation activity of 12 Saudi date cultivars. (a) DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity; (b) anti-lipid peroxidation.

References

    1. Chao C.T., Krueger R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. Hort. Sci. 2007;42:1046–1311.
    1. Awad M.A. Increasing the rate of ripening of date palm fruit (Phoenix dactylifera L.) cv. Helali by preharvest and postharvest treatments. Postharvest Biol. Technol. 2007;43:121–127. doi: 10.1016/j.postharvbio.2006.08.006.
    1. Fayadh J.M., Al-showiman S.S. Chemical composition of date palm (Phoenix dactylifera L.) J. Chem. Soc. Pakistan. 1990;12:84–103.
    1. Besbes S., Blecker C., Deroanne C., Drira N.E., Attia H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004;84:577–584. doi: 10.1016/S0308-8146(03)00281-4.
    1. Al-Shahib W., Marshall R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003;54:247–259. doi: 10.1080/09637480120091982.
    1. Vayalil P.K. Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae) J. Agric. Food Chem. 2002;50:610–617. doi: 10.1021/jf010716t.
    1. Mansouri A., Embarek G., Kokkalou E., Kefalas P. Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera) Food Chem. 2005;89:411–420. doi: 10.1016/j.foodchem.2004.02.051.
    1. Al-Turki S., Shahba M.A., Stushnoff C. Diversity of antioxidant properties and phenolic content of date palm (Phoenix dactylifera L.) fruits as affected by cultivar and location. J. Food Agric. Environ. 2010;8:253–260.
    1. Al-Farsi M., Alasalvar C., Al-Abid M., Al-Shoaily K., Al-Amry M., Al-Rawahy F. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007;104:943–947. doi: 10.1016/j.foodchem.2006.12.051.
    1. Yousif A.K., Benjamin N.D., Kado A., Alddin S.M., Ali S.M. Chemical composition of four Iraqi date cultivars. Date Palm J. 1982;1:285–294.
    1. Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022.
    1. Sallal A.K., Ashkenani A. Effect of date extract on growth and spore germination of Bacillus subtilis. Microbios. 1989;59:203–210.
    1. Shraideh Z.A., Abu-Elteen K.H., Sallal A.K.J. Ultrastructural effects of date extract on Candida albicans. Mycopathologia. 1998;142:119–123. doi: 10.1023/A:1006901019786.
    1. Selim S.A., Alfy S.E., Al-Ruwaili M., Abdo A, Jaouni S.A. Susceptibility of imipenem-resistant Pseudomonas aeruginosa to flavonoid glycosides of date palm (Phoenix dactylifera L.) tamar Growing in Al Madinah, Saudi Arabia. Afr. J. Biotechnol. 2012;11:416–422. doi: 10.5897/AJB11.1412.
    1. Abdul J.C., Shyam S.K., Sreeramanan S. Variations in hormones and antioxidant status in relation to flowering in early, mid, and late varieties of date palm (Phoenix dactylifera) of United Arab Emirates. Sci. World J. 2015;2015 doi: 10.1155/2015/846104.
    1. AbdElgawad H., Farfan-Vignolo E.R., de Vos D., Asard H. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci. 2015;231:1–10. doi: 10.1016/j.plantsci.2014.11.001.
    1. AbdElgawad H., de Vos D., Zinta G., Domagalska M.A., Beemster G.T.S., Asard H. Grassland species differentially regulate proline concentrations under future climate conditions: An integrated biochemical and modelling approach. New Phytol. 2015 doi: 10.1111/nph.13481.
    1. AbdElgawad H., Peshev D., Zinta G., van den Ende W., Janssens I.A., Asard H. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: A comparison of fructan and non-fructan accumulators. PLoS ONE. 2014;9:e92044. doi: 10.1371/journal.pone.0092044.
    1. Pandey R., Zinta G., AbdElgawad H., Ahmad A., Jain V., Janssens I.A. Physiological and molecular alterations in plants exposed to high CO2 under phosphorus stress. Biotechnol. Adv. 2015;33:303–316. doi: 10.1016/j.biotechadv.2015.03.011.
    1. Zinta G., AbdElgawad H., Domagalska M.A., Vergauwen L., Knapen D., Nijs I., Janssens I.A., Beemster G.T., Asard H. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob. Change Biol. 2014;20:3670–3685. doi: 10.1111/gcb.12626.
    1. El-Shafey N.M., Abd-Elgawad H. Luteolin, a bioactive flavone compound extracted from Cichorium endivia L. subsp. divaricatum alleviates the harmful effect of salinity on maize. Acta Physiol. Plant. 2012;34:2165–2177. doi: 10.1007/s11738-012-1017-8.
    1. El-Soud W.A., Hegab M.M., AbdElgawad H., Zinta G., Asard H. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol. Biochem. 2013;71:173–183. doi: 10.1016/j.plaphy.2013.07.007.
    1. Farag M.A., Mohsen M., Heinke R., Wessjohann L.A. Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI-qTOF-MS and GC-MS analyzed by chemometrics. Food Res. Int. 2014;64:218–226. doi: 10.1016/j.foodres.2014.06.021.
    1. Al-Farsi M., Alasalvar C., Morris A., Baron M., Shahidi F. Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in oman. J. Agric. Food Chem. 2005;53:7586–7591. doi: 10.1021/jf050578y.
    1. Singh V., Guizani N., Essa M.M., Hakkim F.L., Rahman M.S. Comparative analysis of total phenolics, flavonoid content and antioxidant profile of different date varieties (Phoenix dactylifera L.) from Sultanate of Oman. Int. Food Res. J. 2012;19:1063–1070.
    1. Allaith A.A.A. Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. Int. J. Food Sci. Technol. 2008;43:1033–1040. doi: 10.1111/j.1365-2621.2007.01558.x.
    1. Okada T., Nakamura Y., Kanaya S., Takano A., Malla K.J., Nakane T., Kitayama M., Sekita S. Metabolome analysis of ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med. 2009;75:1356–1362. doi: 10.1055/s-0029-1185577.
    1. Saafi E.B., Louedi M., Elfeki A., Zakhama A., Najjar M.F., Hammami M., Achour L. Protective effect of date palm fruit extract (Pheonix dactylifera L.) on dimethoate induced-oxidative stress in rat liver. Exp. Toxicol. Pathol. 2011;63:433–441. doi: 10.1016/j.etp.2010.03.002.
    1. Shahrzad S., Aoyagi K., Winter A., Koyama A., Bitsch I. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr. 2001;131:1207–1210.
    1. Emmons C.L., Peterson D.M. Antioxidant activity and phenolic content of oatas affected by cultivar and location. Crop Sci. 2001;41:1676–1681. doi: 10.2135/cropsci2001.1676.
    1. Luke R., Howard J.R. Antioxidant capacity and phenolic content in blue berries as affected by genotype and growing season. J. Sci. Food Agric. 2003;83:1238–1247.
    1. Hong Y.J., Tomas-Barberan F.A., Kader A., Mitchell A.E. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera) J. Agric. Food Chem. 2006;54:2405–2411. doi: 10.1021/jf0581776.
    1. Sanchez-Moreno C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002;8:121–137. doi: 10.1177/1082013202008003770.
    1. Chaira N., Smaali M.I., Martinez-Tome M., Mrabet A., Murcia M.A., Ferchichi A. Simple phenolic composition, flavonoid contents and antioxidant capacities in water-methanol extracts of Tunisian common date cultivars (Phoenix dactylifera L.) Int. J. Food Sci. Nutr. 2009;60:316–329. doi: 10.1080/09637480903124333.
    1. Bilgari F., Alkarkhi A.F.M., Easa A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008;107:1636–1641.
    1. Wuytac T., AbdElgawad H., Staelens J., Asard H., Boeckx P., Verheyen K., Samson R. The response of the foliar antioxidant system and stable isotopes (δ13C and δ15N) of white willow to low-level air pollution. Plant Physiol. Biochem. 2013;67:154–161. doi: 10.1016/j.plaphy.2013.03.007.
    1. Shinmoto H., Dosako S., Nakajima I. Antioxidant activity of bovine lactoferrin on iron/ascorbate induce lipid peroxidation. Biosci. Biotechnol. Biochem. 1992;56:2079–2080. doi: 10.1271/bbb.56.2079.
    1. Bilgari F., Alkarkhi A.F.M., Easa A.M. Cluster analysis of antioxidant compounds in dates (Phoenix dactylifera): Effect of long-term cold storage. Food Chem. 2009;112:998–1001.
    1. Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002.
    1. Nasir M.U., Hussain S., Jabbar S., Rashid F., Khalid N., Mehmood A. A review on the nutritional content, functional properties and medicinal potential of dates. Sci. Lett. 2015;3:17–22.
    1. Johnson D.V., Al-Khayri J.M., Jain S.M. Introduction: Date production status and prospects in Asia and Europe. In: Al-Khayri J.M., Jain S.M., Johnson D.V., editors. Date Palm Genetic Resources and Utilization. 2: Asia and Europe. Volume 2. Springer; Dordrecht, The Netherlands: 2015. pp. 1–16.
    1. Shi L.E., Zheng W., Aleid S.M., Tang Z.X. Date pits: Chemical composition, nutritional and medicinal value, utilization. Crop Sci. 2014;4:1322–1330. doi: 10.2135/cropsci2013.05.0296.
    1. Borochov-Neori H., Judeinstein S., Greenberg A., Volkova N., Rosenblat M., Aviram M. Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of “Amari” and “Hallawi” date (Phoenix dactylifera L.) Varieties. J. Agric. Food Chem. 2015;63:3189–3195. doi: 10.1021/jf506094r.
    1. Taha K.K., Al Ghtani F.M. Determination of the elemental contents of date palm (Phoenix dactylifera L.) from Kharj Saudi Arabia. World Sci. News. 2015;6:125–135.
    1. Bouaziz A.M., Besbes S., Blecker C., Wathelet B., Deroanne C., Attia H. Protein and amino acid profiles of Tunisian Deglet Nour and Allig date palm fruit seeds. Fruits. 2008;63:37–43. doi: 10.1051/fruits:2007043.
    1. Salim S., Ahmed A. Protein and amino acid contents of some Saudi Arabian date palm seeds (Phoenix dactylifera L.) Arab. Gulf. J. Sci. Res. 1992;10:1–9.
    1. Shinwari M.A. Date palm. In: Macrae R., Robinson R.K., Sadler M.J., editors. Encyclopaedia of Food Science, Food Technology & Nutrition. Volume 2. Academic Press; London, UK: 1993. pp. 1300–1305.
    1. Rinderknecht H. The free amino acid of dates in relation to their darkening maturation and storage. Food Res. 1959;24:298–304. doi: 10.1111/j.1365-2621.1959.tb17275.x.
    1. Ahmed I.A., Ahmed A.W.K., Robinson R.K. Chemical composition of date varieties as influenced by the stage of ripening. Food Chem. 1995;54:305–309. doi: 10.1016/0308-8146(95)00051-J.
    1. Messaoudi R.S., Abbeddou S., Mansouri A., Calokerinos A.C., Kefalas P. Phenolic profile and antioxidant activity of date-pits of seven algerian date palm fruit varieties. Int. J. Food Prop. 2013;16:1037–1047. doi: 10.1080/10942912.2011.576355.
    1. Al-Farsi M.A., Lee C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008;108:977–985. doi: 10.1016/j.foodchem.2007.12.009.
    1. Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902.
    1. Traber M.G. Vitamin E. In: Shils M.E., Shike M., Ross A.C., Caballero B., Cousins R., editors. Modern Nutrition in Health and Disease. 10th ed. Lippincott Williams & Wilkins; Baltimore, MD, USA: 2006. pp. 396–411.
    1. Gill S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016.
    1. Assirey E.A. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015;9:75–79. doi: 10.1016/j.jtusci.2014.07.002.
    1. Al-Hooti S., Sidhu J.S., Qabazard H. Studies on the physico-chemical characteristics of date fruits of five UAE cultivars at different stages of maturity. Arab. Gulf. J. Sci. Res. 1995;13:553–569.
    1. Al-Hooti S., Sidhu J.S., Qabazard H. Physicochemical characteristics of five date fruit cultivars grown in the United Arab Emirates. Plant Foods Hum. Nutr. 1997;50:101–113. doi: 10.1007/BF02436030.
    1. Mohamed R.M.A., Fageer A.S.M., Eltayeb M.M., Ahmed I.A.M. Chemical composition, antioxidant capacity, and mineral extractability of Sudanese date palm (Phoenix dactylifera L.) fruits. Food Sci. Nutr. 2014;2:478–489. doi: 10.1002/fsn3.123.
    1. Appel L.J., Moore T.J., Obarzanek E.W., Vollmer M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601.
    1. Gasim A.A. Changes in sugar quality and mineral elements during fruit development in five date palm cultivars in Al-Madinah Al-Munawwarah, JKAU. Science. 1994;6:29–36. doi: 10.4197/Sci.6-1.3.
    1. Fahad A.L., Juhaimi K.G., Özcan M.M. Physicochemical properties and mineral contents of seven different date fruit (Phoenix dactylifera L.) varieties growing in Saudi Arabia. Environ. Monit. Assess. 2014;186:2165–2170.
    1. Cheung L.M., Cheung P.C.K., Ooi V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003;7:249–255. doi: 10.1016/S0308-8146(02)00419-3.
    1. Patro B.S., Rele S., Chintalwar G.J., Chattopadhyay S., Adhikari S., Mukherjee T. Protective activities of some phenolic 1,3-diketones against lipid peroxidation: Possible involvement of the 1,3-diketone moiety. Chem. Biochem. 2002;3:364–370. doi: 10.1002/1439-7633(20020402)3:4<364::AID-CBIC364>;2-S.
    1. Sinhaa A.K., Giblena T., AbdElgawad H., de Rop M., Asard H., Blust R., Boeck G. Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat. Toxicol. 2013;130:86–96. doi: 10.1016/j.aquatox.2013.01.003.
    1. Alasalvar C., Shahidi F., Liyanapathirana C.M., Ohshima T. Turkish tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J. Agric. Food Chem. 2003;51:3790–3796. doi: 10.1021/jf0212385.
    1. Gomaa N.H., AbdElgawad H.R. Phytotoxic effects of Echinochloa colona (L.) Link. (Poaceae) extracts on the germination and seedling growth of weeds. Span. J. Agric. Res. 2012;10:492–501. doi: 10.5424/sjar/2012102-194-11.
    1. Potters G., Horemans N., Bellone S., Caubergs R.J., Trost P., Guisez Y., Asard H. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol. 2004;134:1479–1487. doi: 10.1104/pp.103.033548.
    1. Siebert K.J. Modeling the flavor thresholds of organic acids in beer as a function of their molecular properties. Food Qual. Pref. 1999;10:129–137. doi: 10.1016/S0950-3293(98)00059-7.
    1. Agusa T., Kunito T., Yasunaga G., Iwata H., Subramanian A., Ismail A., Tanabe S. Concentrations of trace elements in marine fish and its risk assessment in Malaysia. Mar. Pollut. Bull. 2005;51:896–911. doi: 10.1016/j.marpolbul.2005.06.007.

Source: PubMed

3
購読する