Can Physical Activity While Sedentary Produce Health Benefits? A Single-Arm Randomized Trial

Marvin A Sackner, Jose R Lopez, Veronica Banderas, Jose A Adams, Marvin A Sackner, Jose R Lopez, Veronica Banderas, Jose A Adams

Abstract

Background: Sedentary time poses a risk to health. Substituting physical activity for inactivity is obvious but this requires a behavior change. Interventions advocated to decrease uninterrupted physical inactivity (defined as Metabolic Equivalent of Task (METS) less than 1.5) are important. One such intervention is accomplished with the Gentle Jogger (GJ), a low risk motorized wellness device which produces effortless, rapid motion of the lower extremities simulating locomotion or fidgeting. GJ produces health benefits in type 2 diabetes, heart disease, and high blood pressure. The purpose of this trial was to ascertain whether GJ increases METS above 1.5 to explain its effectiveness despite sedentary behavior or whether tapping is responsible.

Methods: A randomized single-arm trial was conducted. Subjects were randomized to begin the study in either the supine or seated postures and on the same day crossed over with the starting posture reversed. Oxygen consumption was measured at rest and during GJ.

Results: Twenty-six subjects were studied (15 women and 11 men) with a mean age of 44 ± 15 years and BMI 27.9 ± 5.0, 19 were overweight or obese, and 7 had normal BMI. GJ increased oxygen consumption and METS 15% in the seated posture and 13% in the supine posture. No individual receiving GJ achieved METS exceeding 1.5.

Conclusions: In a moderately obese population, GJ in seated or supine posture did not exceed 1.5 METS. The values are comparable to those reported for sit-stand interventions and cannot explain the health benefits of GJ.

Trial registration: ClinicalTrials.gov, NCT03602365 . Registered on July 26, 2018.

Keywords: Gentle jogger; METS; Oxygen consumption; Physical activity; Physical inactivity; Sedentary.

Conflict of interest statement

JAA performs research for Sackner Wellness Products LLC and is a US co-patent holder for Gentle Jogger®, the Passive Simulated Jogging Device.

VB is a part time study coordinator and employee of Sackner Wellness Products LLC

JRL is a Research Scientist consultant with Sackner Wellness Products LLC

MAS is President of Sackner Wellness Products LLC and Is a US co-patent holder for Gentle Jogger® the Passive Simulated Jogging Device.

References

    1. Agosti V, Graziano S, Artiaco L, Sorrentino G. Biological mechanisms of stroke prevention by physical activity in type 2 diabetes. Acta Neurol Scand. 2009;119(4):213–223. doi: 10.1111/j.1600-0404.2008.01080.x.
    1. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev. 2017;97(4):1351–1402. doi: 10.1152/physrev.00019.2016.
    1. Patterson R, McNamara E, Tainio M, de Sa TH, Smith AD, Sharp SJ, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33(9):811–829. doi: 10.1007/s10654-018-0380-1.
    1. Wajngarten M, Silva GS. Hypertension and Stroke: Update on Treatment. Eur Cardiol. 2019;14(2):111–115. doi: 10.15420/ecr.2019.11.1.
    1. Grontved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;305(23):2448–2455. doi: 10.1001/jama.2011.812.
    1. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–1310. doi: 10.1016/S0140-6736(16)30370-1.
    1. Craighead DH, Heinbockel TC, Hamilton MN, Bailey EF, MacDonald MJ, Gibala MJ, et al. Time-efficient physical training for enhancing cardiovascular function in midlife and older adults: promise and current research gaps. J Appl Physiol (1985) 2019;127(5):1427–1440. doi: 10.1152/japplphysiol.00381.2019.
    1. Keadle SK, McKinnon R, Graubard BI, Troiano RP. Prevalence and trends in physical activity among older adults in the United States: A comparison across three national surveys. Prev Med. 2016;89:37–43. doi: 10.1016/j.ypmed.2016.05.009.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. doi: 10.1249/mss.0b013e31815a51b3.
    1. Derbre F, Gratas-Delamarche A, Gomez-Cabrera MC, Vina J. Inactivity-induced oxidative stress: a central role in age-related sarcopenia? Eur J Sport Sci. 2014;14(Suppl 1):S98–108. doi: 10.1080/17461391.2011.654268.
    1. Katzmarzyk PT, Powell KE, Jakicic JM, Troiano RP, Piercy K, Tennant B, et al. Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Med Sci Sports Exerc. 2019;51(6):1227–1241. doi: 10.1249/MSS.0000000000001935.
    1. Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport. 2015;18(3):294–298. doi: 10.1016/j.jsams.2014.03.008.
    1. Compernolle S, DeSmet A, Poppe L, Crombez G, De Bourdeaudhuij I, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2019;16(1):63. doi: 10.1186/s12966-019-0824-3.
    1. Gao L, Nguyen P, Dunstan D, Moodie M. Are Office-Based Workplace Interventions Designed to Reduce Sitting Time Cost-Effective Primary Prevention Measures for Cardiovascular Disease? A Systematic Review and Modelled Economic Evaluation. Int J Environ Res Public Health. 2019;16(5).
    1. Kruse NT, Hughes WE, Benzo RM, Carr LJ, Casey DP. Workplace Strategies to Prevent Sitting-induced Endothelial Dysfunction. Med Sci Sports Exerc. 2018;50(4):801–808. doi: 10.1249/MSS.0000000000001484.
    1. Shrestha N, Grgic J, Wiesner G, Parker A, Podnar H, Bennie JA, et al. Effectiveness of interventions for reducing non-occupational sedentary behaviour in adults and older adults: a systematic review and meta-analysis. Br J Sports Med. 2019;53(19):1206–1213. doi: 10.1136/bjsports-2017-098270.
    1. Shrestha N, Kukkonen-Harjula KT, Verbeek JH, Ijaz S, Hermans V, Pedisic Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst Rev. 2018;6:CD010912.
    1. Thorsen IK, Johansen MY, Pilmark NS, Jespersen NZ, Brinklov CF, Benatti FB, et al. The effect of frequency of activity interruptions in prolonged sitting on postprandial glucose metabolism: A randomized crossover trial. Metabolism. 2019;96:1–7. doi: 10.1016/j.metabol.2019.04.003.
    1. Adams JA, Banderas V, J. LR, Sackner MA. Portable Gentle Jogger Improves Glycemic Indices in Type 2 Diabetic and Healthy Subjects Living at Home: A Pilot Study. J Diabetes Res. 2020.
    1. Adams JA, Patel S, Lopez JR, Sackner MA. The Effects of Passive Simulated Jogging on Short-Term Heart Rate Variability in a Heterogeneous Group of Human Subjects. J Sports Med (Hindawi Publ Corp) 2018;2018:4340925.
    1. Sackner MA, Patel S, Adams JA. Changes of blood pressure following initiation of physical inactivity and after external addition of pulses to circulation. Eur J Appl Physiol. 2019;119(1):201–211. doi: 10.1007/s00421-018-4016-7.
    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–131.
    1. Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13(8):555–565. doi: 10.1002/clc.4960130809.
    1. Adams JA, Banderas V, Lopez JR, Sackner MA. Portable Gentle Jogger Improves Glycemic Indices in Type 2 Diabetic and Healthy Subjects Living at Home: A Pilot Study. J Diabetes Res. 2020;2020:8317973. doi: 10.1155/2020/8317973.
    1. Sackner M, Adams JA. Does Fibromyalgia Sit in a Chair? Symptomatic Relief with a Simulated Jogging. Fibromyalgia, Open Access. 2017.
    1. Morishima T, Restaino RM, Walsh LK, Kanaley JA, Fadel PJ, Padilla J. Prolonged sitting-induced leg endothelial dysfunction is prevented by fidgeting. Am J Physiol. 2016;311(1):H177–H182.
    1. Miles-Chan JL, Sarafian D, Montani JP, Schutz Y, Dulloo AG. Sitting comfortably versus lying down: is there really a difference in energy expenditure? Clin Nutr. 2014;33(1):175–178. doi: 10.1016/j.clnu.2013.11.009.
    1. Richardson HB. The respiratory quotient. Physiol Rev. 1929;9.
    1. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–2667. doi: 10.2337/db07-0882.
    1. Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72(6):1451–1454. doi: 10.1093/ajcn/72.6.1451.
    1. Shrestha N, Bhaumik S. Are interventions to reduce sitting at workplace effective? J Family Med Prim Care. 2015;4(3):331–332. doi: 10.4103/2249-4863.161309.
    1. Amaro-Gahete FJ, Sanchez-Delgado G, Alcantara JMA, Martinez-Tellez B, Acosta FM, Merchan-Ramirez E, et al. Energy expenditure differences across lying, sitting, and standing positions in young healthy adults. PLoS One. 2019;14(6):e0217029. doi: 10.1371/journal.pone.0217029.
    1. Judice PB, Hamilton MT, Sardinha LB, Zderic TW, Silva AM. What is the metabolic and energy cost of sitting, standing and sit/stand transitions? Eur J Appl Physiol. 2016;116(2):263–273. doi: 10.1007/s00421-015-3279-5.
    1. McAlpine DA, Manohar CU, McCrady SK, Hensrud D, Levine JA. An office-place stepping device to promote workplace physical activity. Br J Sports Med. 2007;41(12):903–907. doi: 10.1136/bjsm.2006.034900.
    1. Monnard CR, Miles-Chan JL. Energy Cost of Standing in a Multi-Ethnic Cohort: Are Energy-Savers a Minority or the Majority? PLoS One. 2017;12(1):e0169478. doi: 10.1371/journal.pone.0169478.
    1. Popp CJ, Tisch JJ, Sakarcan KE, Bridges WC, Jesch ED. Approximate Time to Steady-state Resting Energy Expenditure Using Indirect Calorimetry in Young, Healthy Adults. Front Nutr. 2016;3:49. doi: 10.3389/fnut.2016.00049.
    1. Roemmich JN. Height-Adjustable Desks: Energy Expenditure, Liking, and Preference of Sitting and Standing. J Phys Act Health. 2016;13(10):1094–1099. doi: 10.1123/jpah.2015-0397.
    1. Beers EA, Roemmich JN, Epstein LH, Horvath PJ. Increasing passive energy expenditure during clerical work. Eur J Appl Physiol. 2008;103(3):353–360. doi: 10.1007/s00421-008-0713-y.
    1. Burns J, Forde C, Dockrell S. Energy Expenditure of Standing Compared to Sitting While Conducting Office Tasks. Hum Factors. 2017;59(7):1078–1087. doi: 10.1177/0018720817719167.
    1. Caljouw SR, de Vries R, Withagen R. RAAAF's office landscape The End of Sitting: Energy expenditure and temporary comfort when working in non-sitting postures. PLoS One. 2017;12(11):e0187529. doi: 10.1371/journal.pone.0187529.
    1. Carter SE, Jones M, Gladwell VF. Energy expenditure and heart rate response to breaking up sedentary time with three different physical activity interventions. Nutr Metab Cardiovasc Dis. 2015;25(5):503–509. doi: 10.1016/j.numecd.2015.02.006.
    1. Cox RH, Guth J, Siekemeyer L, Kellems B, Brehm SB, Ohlinger CM. Metabolic cost and speech quality while using an active workstation. J Phys Act Health. 2011;8(3):332–339. doi: 10.1123/jpah.8.3.332.
    1. Creasy SA, Rogers RJ, Byard TD, Kowalsky RJ, Jakicic JM. Energy Expenditure During Acute Periods of Sitting, Standing, and Walking. J Phys Act Health. 2016;13(6):573–578. doi: 10.1123/jpah.2015-0419.
    1. Fountaine CJ, Johann J, Skalko C, Liguori GA. Metabolic and Energy Cost of Sitting, Standing, and a Novel Sitting/Stepping Protocol in Recreationally Active College Students. Int J Exerc Sci. 2016;9(2):223–229.
    1. Gibbs BB, Kowalsky RJ, Perdomo SJ, Grier M, Jakicic JM. Energy expenditure of deskwork when sitting, standing or alternating positions. Occup Med (Lond) 2017;67(2):121–127. doi: 10.1093/occmed/kqw115.
    1. Kanade AN, Gokhale MK, Rao S. Energy costs of standard activities among Indian adults. Eur J Clin Nutr. 2001;55(8):708–713. doi: 10.1038/sj.ejcn.1601211.
    1. Levine JA, Miller JM. The energy expenditure of using a “walk-and-work” desk for office workers with obesity. Br J Sports Med. 2007;41(9):558–561. doi: 10.1136/bjsm.2006.032755.
    1. Gao Y, Silvennoinen M, Pesola AJ, Kainulainen H, Cronin NJ, Finni T. Acute Metabolic Response, Energy Expenditure, and EMG Activity in Sitting and Standing. Med Sci Sports Exerc. 2017;49(9):1927–1934. doi: 10.1249/MSS.0000000000001305.
    1. Uryash A, Wu H, Bassuk J, Kurlansky P, Sackner MA, Adams JA. Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation. J Appl Physiol (1985) 2009;106(6):1840–1847. doi: 10.1152/japplphysiol.91612.2008.
    1. Hutcheson IR, Griffith TM. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Phys. 1991;261(1 Pt 2):H257–H262.
    1. Adams JA, Moore JE, Jr, Moreno MR, Coelho J, Bassuk J, Wu D. Effects of periodic body acceleration on the in vivo vasoactive response to N-omega-nitro-L-arginine and the in vitro nitric oxide production. Ann Biomed Eng. 2003;31(11):1337–1346. doi: 10.1114/1.1623486.
    1. Adams JA, Mangino MJ, Bassuk J, Kurlansky P, Sackner MA. Regional blood flow during periodic acceleration. Crit Care Med. 2001;29(10):1983–1988. doi: 10.1097/00003246-200110000-00022.
    1. Sackner MA, Gummels E, Adams JA. Nitric oxide is released into circulation with whole-body, periodic acceleration. Chest. 2005;127(1):30–39. doi: 10.1378/chest.127.1.30.
    1. Sackner MA, Gummels E, Adams JA. Effect of moderate-intensity exercise, whole-body periodic acceleration, and passive cycling on nitric oxide release into circulation. Chest. 2005;128(4):2794–2803. doi: 10.1378/chest.128.4.2794.
    1. Matsumoto T, Fujita M, Tarutani Y, Yamane T, Takashima H, Nakae I, et al. Whole-body periodic acceleration enhances brachial endothelial function. Circ J. 2008;72(1):139–143. doi: 10.1253/circj.72.139.
    1. Takase B, Hattori H, Tanaka Y, Uehata A, Nagata M, Ishihara M, et al. Acute Effect of Whole-Body Periodic Acceleration on Brachial Flow-Mediated Vasodilatation Assessed by a Novel Semi-Automatic Vessel Chasing UNEXEF18G System. J Cardiovasc Ultrasound. 2013;21(3):130–136. doi: 10.4250/jcu.2013.21.3.130.
    1. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H2–12. doi: 10.1152/ajpheart.00471.2010.
    1. Fukuda S, Shimada K, Kawasaki T, Kono Y, Jissho S, Taguchi H, et al. "Passive exercise" using whole body periodic acceleration: effects on coronary microcirculation. Am Heart J. 2010;159(4):620–626. doi: 10.1016/j.ahj.2009.12.034.
    1. Kohler M, Amann-Vesti BR, Clarenbach CF, Brack T, Noll G, Russi EW, et al. Periodic whole body acceleration: a novel therapy for cardiovascular disease. VASA Zeitschrift fur Gefasskrankheiten. 2007;36(4):261–266. doi: 10.1024/0301-1526.36.4.261.
    1. Miyamoto S, Fujita M, Inoko M, Oba M, Hosokawa R, Haruna T, et al. Effect on treadmill exercise capacity, myocardial ischemia, and left ventricular function as a result of repeated whole-body periodic acceleration with heparin pretreatment in patients with angina pectoris and mild left ventricular dysfunction. Am J Cardiol. 2011;107(2):168–174. doi: 10.1016/j.amjcard.2010.09.007.
    1. Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am J Epidemiol. 1997;145(10):899–908. doi: 10.1093/oxfordjournals.aje.a009049.
    1. Mortensen SP, Askew CD, Walker M, Nyberg M, Hellsten Y. The hyperaemic response to passive leg movement is dependent on nitric oxide: a new tool to evaluate endothelial nitric oxide function. J Physiol. 2012;590(17):4391–4400. doi: 10.1113/jphysiol.2012.235952.
    1. Hellsten Y, Rufener N, Nielsen JJ, Hoier B, Krustrup P, Bangsbo J. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. Am J Phys Regul Integr Comp Phys. 2008;294(3):R975–R982.
    1. Hoier B, Rufener N, Bojsen-Moller J, Bangsbo J, Hellsten Y. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol. 2010;588(Pt 19):3833–3845. doi: 10.1113/jphysiol.2010.190439.
    1. Trinity JD, Groot HJ, Layec G, Rossman MJ, Ives SJ, Morgan DE, et al. Passive leg movement and nitric oxide-mediated vascular function: the impact of age. Am J Physiol. 2015;308(6):H672–H679.
    1. Trinity JD, Groot HJ, Layec G, Rossman MJ, Ives SJ, Runnels S, et al. Nitric oxide and passive limb movement: a new approach to assess vascular function. J Physiol. 2012;590(6):1413–1425. doi: 10.1113/jphysiol.2011.224741.

Source: PubMed

3
購読する