Relationship between Behavioral and Objective Measures of Sound Intensity in Normal-Hearing Listeners and Hearing-Aid Users: A Pilot Study

Elsa Legris, John Galvin, Yassine Mofid, Nadia Aguillon-Hernandez, Sylvie Roux, Jean-Marie Aoustin, Marie Gomot, David Bakhos, Elsa Legris, John Galvin, Yassine Mofid, Nadia Aguillon-Hernandez, Sylvie Roux, Jean-Marie Aoustin, Marie Gomot, David Bakhos

Abstract

Background: For hearing-impaired individuals, hearing aids are clinically fit according to subjective measures of threshold and loudness. The goal of this study was to evaluate objective measures of loudness perception that might benefit hearing aid fitting. Method: Seventeen adult hearing aid users and 17 normal-hearing adults participated in the study. Outcome measures including categorical loudness scaling, cortical auditory evoked potentials (CAEPs), and pupillometry. Stimuli were 1-kHz tone bursts presented at 40, 60, and 80 dBA. Results: Categorical loudness scaling showed that loudness significantly increased with intensity for all participants (p < 0.05). For CAEPs, high intensity was associated with greater P1, N1, and P2 peak amplitude for all listeners (p < 0.05); a significant but small effect of hearing aid amplification was observed. For all participants, pupillometry showed significant effects of high intensity on pupil dilation (p < 0.05); there was no significant effect of hearing aid amplification. A Focused Principal Component analysis revealed significant correlations between subjective loudness and some of the objective measures. Conclusion: The present data suggest that intensity had a significant impact on loudness perception, CAEPs, and pupil response. The correlations suggest that pupillometry and/or CAEPs may be useful in determining comfortable amplification for hearing aids.

Keywords: cortical auditory evoked potential; hearing aid; loudness perception; objective measures; pupillometry.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pupillometry paradigm. Progression of the visual stimuli: first a white image was presented for 2 s, followed by a black image for 2 s, followed by a white image for 2 s, followed finally by a gray image, which remained present during the experimental run. A 1-kHz tone burst was presented at an interval of 20–30 s.
Figure 2
Figure 2
Boxplots of loudness ratings for 1-kHz tone bursts at 40, 60, or 80 dBA for the NH group, the HA group (aided), and the HA group (unaided). The boxes show the 25th and 75th percentiles, the error bars show the 10th and 90th percentiles, the filled circles show outliers, the horizontal lines show the median, and the white stars show the mean.
Figure 3
Figure 3
Mean CAEP responses recorded at Cz (top) or for GFP (bottom) with a 1-kHz tone burst presented at 40, 60, or 80 dBA for the NH group and the HA group (aided and unaided).
Figure 4
Figure 4
Peak pupil diameter as a function of time for mean NH group and the HA group (aided and unaided) after a tone burst at 1 kHz with 1 s length (grey shaded).
Figure 5
Figure 5
Boxplots of peak pupil diameter (top) and latency (bottom) in response to 1-kHz tone bursts at 40, 60, or 80 dBA for the NH for the NH group and the HA group with the HA on or off. The boxes show the 25th and 75th percentiles, the error bars show the 10th and 90th percentiles, the filled circles show outliers, the horizontal lines show the median, and the white stars show the mean.
Figure 6
Figure 6
Left panels: FPCA plots of between loudness perception and objective responses to stimuli for the NH and HA groups (HA on or off); the center represents the variable to explain (loudness) and explanatory variables (pupillometry and CAEPs). The circles represent Cz amplitude, the squares represent Cz latency, the up triangles represent GFP amplitude, the down triangles represent GFP latency, the stars represent pupil diameter, and the diamonds represent pupil latency. The green and yellow symbols represent positive and negative correlations between the dependent and explanatory variables, respectively. The explanatory variables within the red circle were significantly correlated with the dependent variable (p < 0.05). Right panels: Correlation matrices among the behavioral and objective measures. The bar to the right of the matrices shows the color coding for the correlation coefficients, ranging from −1 to 1. Within the matrices, the color and size of the circle represents the strength of correlation between two variables.

References

    1. Marozeau J., Florentine M. Loudness Growth in Individual Listeners with Hearing Losses: A Review. J. Acoust. Soc. Am. 2007;122:EL81–EL87. doi: 10.1121/1.2761924.
    1. Robles L., Ruggero M.A. Mechanics of the Mammalian Cochlea. Physiol. Rev. 2001;81:1305–1352. doi: 10.1152/physrev.2001.81.3.1305.
    1. Ruggero M.A., Rich N.C., Recio A. The Effect of Intense Acoustic Stimulation on Basilar-Membrane Vibrations. Audit. Neurosci. 1996;2:329–345.
    1. Lopez-Poveda E.A. Why Do I Hear but Not Understand? Stochastic Undersampling as a Model of Degraded Neural Encoding of Speech. Front. Neurosci. 2014;8:348. doi: 10.3389/fnins.2014.00348.
    1. Lopez-Poveda E.A., Johannesen P.T. Behavioral Estimates of the Contribution of Inner and Outer Hair Cell Dysfunction to Individualized Audiometric Loss. JARO J. Assoc. Res. Otolaryngol. 2012;13:485–504. doi: 10.1007/s10162-012-0327-2.
    1. Keidser G., Dillon H., Flax M., Ching T., Brewer S. The NAL-NL2 Prescription Procedure. Audiol. Res. 2011;1:88–90. doi: 10.4081/audiores.2011.e24.
    1. Scollie S., Seewald R., Cornelisse L., Moodie S., Bagatto M., Laurnagaray D., Beaulac S., Pumford J. The Desired Sensation Level Multistage Input/Output Algorithm. Trends Amplif. 2005;9:159–197. doi: 10.1177/108471380500900403.
    1. Beck D. Programmable Instruments and Successive Approximations. Hear. Rev. 1997;4:21–26.
    1. Jenstad L.M., Van Tasell D.J., Ewert C. Hearing Aid Troubleshooting Based on Patients’ Descriptions. J. Am. Acad. Audiol. 2003;14:347–360. doi: 10.1055/s-0040-1715754.
    1. Kuk F. How Flow Charts Can Help You Troubleshoot Hearing Aid Problems. Hear. J. 1999;52:46–52. doi: 10.1097/00025572-199910000-00005.
    1. Kuk F. Using the i/o Curve to Help Solve Subjective Complaints with WDRC Hearing Instruments. Hear. Rev. 1998;5:8–59.
    1. Schum D.J., Burton C., Christensen J. The Use of Advanced Fitting Software in the Counseling Process. Hear. Rev. 1997;4:59–62.
    1. Schweitzer C., Mortz M., Vaughan N. Perhaps Not by Prescription—But by Perception. High Perform. Hear. Solut. 1999;3:58–62.
    1. Abrams H.B., Kihm J. An Introduction to MarkeTrak IX: A New Baseline for the Hearing Aid Market. Hear. Rev. 2015;22:16.
    1. Artières F., Vieu A., Mondain M., Uziel A., Venail F. Impact of Early Cochlear Implantation on the Linguistic Development of the Deaf Child. Otol. Neurotol. 2009;30:736–742. doi: 10.1097/MAO.0b013e3181b2367b.
    1. Nikolopoulos T.P., Gibbin K.P., Dyar D. Predicting Speech Perception Outcomes Following Cochlear Implantation Using Nottingham Children’s Implant Profile (NChIP) Int. J. Pediatric Otorhinolaryngol. 2004;68:137–141. doi: 10.1016/j.ijporl.2003.09.020.
    1. Niparko J.K., Tobey E.A., Thal D.J., Eisenberg L.S., Wang N.-Y., Quittner A.L., Fink N.E., CI Investigative Team Spoken Language Development in Children Following Cochlear Implantation. JAMA. 2010;303:1498–1506. doi: 10.1001/jama.2010.451.
    1. O’Donoghue G.M., Nikolopoulos T.P., Archbold S.M. Determinants of Speech Perception in Children after Cochlear Implantation. Lancet. 2000;356:466–468. doi: 10.1016/S0140-6736(00)02555-1.
    1. Lazard D.S., Lee H.J., Gaebler M., Kell C.A., Truy E., Giraud A.L. Phonological Processing in Post-Lingual Deafness and Cochlear Implant Outcome. NeuroImage. 2010;49:3443–3451. doi: 10.1016/j.neuroimage.2009.11.013.
    1. Purdy S., Katsch R., Dillon H., Storey L., Sharma M., Agung K. Aided Cortical Auditory Evoked Potentials for Hearing Instrument Evaluation in Infants. Phonak AG; Stäfa, Switzerland: 2005. pp. 115–128.
    1. Mehta K., Mahon M., Van Dun B., Marriage J., Vickers D. Clinicians’ Views of Using Cortical Auditory Evoked Potentials (CAEP) in the Permanent Childhood Hearing Impairment Patient Pathway. Int. J. Audiol. 2020;59:81–89. doi: 10.1080/14992027.2019.1654623.
    1. Carter L., Golding M., Dillon H., Seymour J. The Detection of Infant Cortical Auditory Evoked Potentials (CAEPs) Using Statistical and Visual Detection Techniques. J. Am. Acad. Audiol. 2010;21:347–356. doi: 10.3766/jaaa.21.5.6.
    1. McPherson D.L. Late Potentials of the Auditory System. Singular Publishing Group; San Diego, CA, USA: 1996.
    1. Kosaner J. Generating Speech Processor Programmes for Children Using ESRT Measurements. Cochlear Implant. Int. 2010;11:20–24. doi: 10.1179/146701010X12726366068535.
    1. Kosaner J., Anderson I., Turan Z., Deibl M. The Use of ESRT in Fitting Children with Cochlear Implants. J. Int. Adv. Otol. 2009;5:70–79.
    1. Bertrand A.L., Garcia J.B.S., Viera E.B., Santos A.M., Bertrand R.H. Pupillometry: The Influence of Gender and Anxiety on the Pain Response. Pain Physician. 2013;16:E257–E266.
    1. Connelly M.A., Brown J.T., Kearns G.L., Anderson R.A., St Peter S.D., Neville K.A. Pupillometry: A Non-Invasive Technique for Pain Assessment in Paediatric Patients. Arch. Dis. Child. 2014;99:1125–1131. doi: 10.1136/archdischild-2014-306286.
    1. Kahneman D., Beatty J. Pupil Diameter and Load on Memory. Science. 1966;154:1583–1585. doi: 10.1126/science.154.3756.1583.
    1. Tursky B., Shapiro D., Crider A., Kahneman D. Pupillary, Heart Rate, and Skin Resistance Changes during a Mental Task. J. Exp. Psychol. 1969;79:164–167. doi: 10.1037/h0026952.
    1. Hillyard S.A., Hink R.F., Schwent V.L., Picton T.W. Electrical Signs of Selective Attention in the Human Brain. Science. 1973;182:177–180. doi: 10.1126/science.182.4108.177.
    1. Kahneman D., Onuska L., Wolman R.E. Effects of Grouping on the Pupillary Response in a Short-Term Memory Task. Q. J. Exp. Psychol. 1968;20:309–311. doi: 10.1080/14640746808400168.
    1. Schluroff M., Zimmermann T.E., Freeman R.B., Hofmeister K., Lorscheid T., Weber A. Pupillary Responses to Syntactic Ambiguity of Sentences. Brain Lang. 1986;27:322–344. doi: 10.1016/0093-934X(86)90023-4.
    1. Samuels E.R., Szabadi E. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans. Curr. Neuropharmacol. 2008;6:254–285. doi: 10.2174/157015908785777193.
    1. Steinhauer S.R., Siegle G.J., Condray R., Pless M. Sympathetic and Parasympathetic Innervation of Pupillary Dilation during Sustained Processing. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2004;52:77–86. doi: 10.1016/j.ijpsycho.2003.12.005.
    1. Hess E.H. Review of Pupillometry: The Psychology of the Pupillary Response. Am. J. Psychol. 1978;91:547–549. doi: 10.2307/1421703.
    1. Beatty J. Phasic Not Tonic Pupillary Responses Vary with Auditory Vigilance Performance. Psychophysiology. 1982;19:167–172. doi: 10.1111/j.1469-8986.1982.tb02540.x.
    1. Zekveld A.A., Kramer S.E., Festen J.M. Cognitive Load during Speech Perception in Noise: The Influence of Age, Hearing Loss, and Cognition on the Pupil Response. Ear Hear. 2011;32:498–510. doi: 10.1097/AUD.0b013e31820512bb.
    1. Zekveld A.A., Kramer S.E., Festen J.M. Pupil Response as an Indication of Effortful Listening: The Influence of Sentence Intelligibility. Ear Hear. 2010;31:480–490. doi: 10.1097/AUD.0b013e3181d4f251.
    1. Ahern S., Beatty J. Pupillary Responses during Information Processing Vary with Scholastic Aptitude Test Scores. Science. 1979;205:1289–1292. doi: 10.1126/science.472746.
    1. McGarrigle R., Dawes P., Stewart A.J., Kuchinsky S.E., Munro K.J. Pupillometry Reveals Changes in Physiological Arousal during a Sustained Listening Task. Psychophysiology. 2017;54:193–203. doi: 10.1111/psyp.12772.
    1. Wagner A.E., Nagels L., Toffanin P., Opie J.M., Başkent D. Individual Variations in Effort: Assessing Pupillometry for the Hearing Impaired. Trends Hear. 2019;23:1–18. doi: 10.1177/2331216519845596.
    1. Bianchi F., Wendt D., Wassard C., Maas P., Lunner T., Rosenbom T., Holmberg M. Benefit of Higher Maximum Force Output on Listening Effort in Bone-Anchored Hearing System Users: A Pupillometry Study. Ear Hear. 2019;40:1220–1232. doi: 10.1097/AUD.0000000000000699.
    1. Fiedler L., Seifi Ala T., Graversen C., Alickovic E., Lunner T., Wendt D. Hearing Aid Noise Reduction Lowers the Sustained Listening Effort During Continuous Speech in Noise-A Combined Pupillometry and EEG Study. Ear Hear. 2021;42:1590–1601. doi: 10.1097/AUD.0000000000001050.
    1. Micula A., Rönnberg J., Fiedler L., Wendt D., Jørgensen M.C., Larsen D.K., Ng E.H.N. The Effects of Task Difficulty Predictability and Noise Reduction on Recall Performance and Pupil Dilation Responses. Ear Hear. 2021;42:1668–1679. doi: 10.1097/AUD.0000000000001053.
    1. Slugocki C., Kuk F., Korhonen P. Effects of Directional Microphone and Noise Reduction on Subcortical and Cortical Auditory-Evoked Potentials in Older Listeners with Hearing Loss. Ear Hear. 2020;41:1282–1293. doi: 10.1097/AUD.0000000000000847.
    1. Nunnally J.C., Knott P.D., Duchnowski A., Parker R. Pupillary Response as a General Measure of Activation. Percept. Psychophys. 1967;2:149–155. doi: 10.3758/BF03210310.
    1. Antikainen J., Niemi P. Neuroticism and the Pupillary Response to a Brief Exposure to Noise. Biol. Psychol. 1983;17:131–135. doi: 10.1016/0301-0511(83)90013-3.
    1. Jones P.D., Loeb M., Cohen A. Effects of Intense Continuous- and Impact-Type Noise on Pupil Size and Visual Acuity. J. Am. Audiol. Soc. 1977;2:202–207.
    1. Adler G., Adler J. Influence of Stimulus Intensity on AEP Components in the 80- to 200-Millisecond Latency Range. Audiology. 1989;28:316–324. doi: 10.3109/00206098909081638.
    1. Beagley H.A., Knight J.J. Changes in Auditory Evoked Response with Intensity. J. Laryngol. Otol. 1967;81:861–873. doi: 10.1017/S0022215100067815.
    1. Boothroyd A. Recovery of Speech Perception Performance after Prolonged Auditory Deprivation: Case Study. J. Am. Acad. Audiol. 1993;4:331–336.
    1. Bruneau N., Roux S., Garreau B., Lelord G. Frontal Auditory Evoked Potentials and Augmenting-Reducing. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1985;62:364–371. doi: 10.1016/0168-5597(85)90045-0.
    1. Khechinashvili S.N., Kevanishvili Z.S., Kajaia O.A. Amplitude and Latency Studies of the Averaged Auditory Evoked Responses to Tones of Different Intensities. Acta Otolaryngol. 1973;76:395–401. doi: 10.3109/00016487309121527.
    1. Martin B.A., Boothroyd A. Cortical, Auditory, Evoked Potentials in Response to Changes of Spectrum and Amplitude. J. Acoust. Soc. Am. 2000;107:2155–2161. doi: 10.1121/1.428556.
    1. McCandless G.A., Best L. Summed Evoked Responses Using Pure-Tone Stimuli. J. Speech Lang. Hear. Res. 1966;9:266–272. doi: 10.1044/jshr.0902.266.
    1. Moore E.J., Rose D.E. Variability of Latency and Amplitude of Acoustically Evoked Responses to Pure Tones of Moderate to High Intensity. Int. Audiol. 1969;8:172–181. doi: 10.3109/05384916909070204.
    1. Polich J., Aung M., Dalessio D.J. Long Latency Auditory Evoked Potentials: Intensity, Inter-Stimulus Interval, and Habituation. Pavlov. J. Biol. Sci. 1988;23:35–40. doi: 10.1007/BF02910543.
    1. Potter T., Li S., Nguyen T., Nguyen T., Ince N., Zhang Y. Characterization of Volume-Based Changes in Cortical Auditory Evoked Potentials and Prepulse Inhibition. Sci. Rep. 2017;7:11098. doi: 10.1038/s41598-017-11191-3.
    1. Prakash H., Abraham A., Rajashekar B., Yerraguntla K. The Effect of Intensity on the Speech Evoked Auditory Late Latency Response in Normal Hearing Individuals. J. Int. Adv. Otol. 2016;12:67–71. doi: 10.5152/iao.2016.1776.
    1. Rapin I., Schimmel H., Tourk L.M., Krasnegor N.A., Pollak C. Evoked Responses to Clicks and Tones of Varying Intensity in Waking Adults. Electroencephalogr. Clin. Neurophysiol. 1966;21:335–344. doi: 10.1016/0013-4694(66)90039-3.
    1. Roth W.T., Dorato K.H., Kopell B.S. Intensity and Task Effects on Evoked Physiological Responses to Noise Bursts. Psychophysiology. 1984;21:466–481. doi: 10.1111/j.1469-8986.1984.tb00228.x.
    1. Billings C.J., Tremblay K.L., Souza P.E., Binns M.A. Effects of Hearing Aid Amplification and Stimulus Intensity on Cortical Auditory Evoked Potentials. Audiol. Neurotol. 2007;12:234–246. doi: 10.1159/000101331.
    1. Billings C.J., Tremblay K.L., Miller C.W. Aided Cortical Auditory Evoked Potentials in Response to Changes in Hearing Aid Gain. Int. J. Audiol. 2011;50:459–467. doi: 10.3109/14992027.2011.568011.
    1. Tremblay K.L., Kalstein L., Billings C.J., Souza P.E. The Neural Representation of Consonant-Vowel Transitions in Adults Who Wear Hearing Aids. Trends Amplif. 2006;10:155–162. doi: 10.1177/1084713806292655.
    1. Biap Classification Audiométrique Des Déficiences Auditives. [(accessed on 10 March 2022)]. Available online: .
    1. Lafon J.C. Audiometry with the phonetic test. Acta Otorhinolaryngol. Belg. 1964;18:619–633.
    1. Aguera P.-E., Jerbi K., Caclin A., Bertrand O. ELAN: A Software Package for Analysis and Visualization of MEG, EEG, and LFP Signals. Comput. Intell. Neurosci. 2011;2011:158970. doi: 10.1155/2011/158970.
    1. Beatty J., Lucero-Wagoner B. Handbook of Psychophysiology. 2nd ed. Cambridge University Press; New York, NY, USA: 2000. The Pupillary System; pp. 142–162.
    1. Falissard B. Focused Principal Component Analysis: Looking at a Correlation Matrix with a Particular Interest in a Given Variable. J. Comput. Graph. Stat. 1999;8:906–912. doi: 10.2307/1390833.
    1. Falissard B. A Spherical Representation of a Correlation Matrix. J. Classif. 1996;13:267–280. doi: 10.1007/BF01246102.
    1. Korczak P.A., Kurtzberg D., Stapells D.R. Effects of Sensorineural Hearing Loss and Personal Hearing AIDS on Cortical Event-Related Potential and Behavioral Measures of Speech-Sound Processing. Ear Hear. 2005;26:165–185. doi: 10.1097/00003446-200504000-00005.
    1. Smadja D., Mas J.L., de Recondo J. Anatomie Des Voies Sympathiques et Parasympathiques Oculaires. EMC–Ophtalmologie. 1988;21 007 A 50:4.
    1. Kahneman D. Attention and Efforts. Engelwood Cliffs; New Jersey, NJ, USA: 1973.
    1. Laeng B., Sirois S., Gredebäck G. Pupillometry: A Window to the Preconscious? Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2012;7:18–27. doi: 10.1177/1745691611427305.
    1. Dillon H. Hearing Aids. Hodder Arnold; London, UK: 2008.
    1. Eggermont J. Auditory Evoked Potentials: Basic Principles and Clinical Application. Volume 1. Lippincott Williams & Wilkins; Baltimore, MD, USA: 2007. Electric and Magnetic Fields of Synchronous Neural Activity; pp. 2–21.
    1. Dawes P., Munro K.J., Kalluri S., Edwards B. Auditory Acclimatization and Hearing Aids: Late Auditory Evoked Potentials and Speech Recognition Following Unilateral and Bilateral Amplification. J. Acoust. Soc. Am. 2014;135:3560–3569. doi: 10.1121/1.4874629.
    1. Karawani H., Jenkins K., Anderson S. Restoration of Sensory Input May Improve Cognitive and Neural Function. Neuropsychologia. 2018;114:203–213. doi: 10.1016/j.neuropsychologia.2018.04.041.
    1. Piquado T., Isaacowitz D., Wingfield A. Pupillometry as a Measure of Cognitive Effort in Younger and Older Adults. Psychophysiology. 2010;47:560–569. doi: 10.1111/j.1469-8986.2009.00947.x.
    1. Wetzel N., Buttelmann D., Schieler A., Widmann A. Infant and Adult Pupil Dilation in Response to Unexpected Sounds. Dev. Psychobiol. 2016;58:382–392. doi: 10.1002/dev.21377.
    1. Bakhos D., Delage H., Galvin J., Lescanne E., Roux S., Bonnet-Brilhault F., Bruneau N. Cortical Electrophysiological Markers of Language Abilities in Children with Hearing AIDS: A Pilot Study. BioMed Res. Int. 2014;2014:198153. doi: 10.1155/2014/198153.
    1. Anne-Kristin A., Verhey J.L. Spectral Loudness Summation for Short and Long Signals as a Function of Level|Researcher Information|J-GLOBAL. J. Acoust. Soc. Am. 2006;119:2919–2928. doi: 10.1121/1.2184224.
    1. Garnier S., Micheyl C., Arthaud P., Collet L. Effect of Frequency Content on Categorical Loudness Normalization. Scand. Audiol. 2000;29:253–259. doi: 10.1080/010503900750022880.
    1. Leibold L.J., Tan H., Khaddam S., Jesteadt W. Contributions of Individual Components to the Overall Loudness of a Multitone Complex. J. Acoust. Soc. Am. 2007;121:2822–2831. doi: 10.1121/1.2715456.
    1. Florentine M., Buus S., Poulsen T. Temporal Integration of Loudness as a Function of Level. J. Acoust. Soc. Am. 1996;99:1633–1644. doi: 10.1121/1.415236.
    1. Stéphane Garnier L.C., Micheyl C., Arthaud P., Berger-Vachon C. Temporal Loudness Integration and Spectral Loudness Summation in Normal-Hearing and Hearing-Impaired Listeners. Acta Otolaryngol. 1999;119:154–157. doi: 10.1080/00016489950181567.
    1. Zwislocki J.J. Temporal Summation of Loudness: An Analysis. J. Acoust. Soc. Am. 1969;46:431–441. doi: 10.1121/1.1911708.
    1. Gorga M.P., Kaminski J.R., Beauchaine K.L., Bergman B.M. A Comparison of Auditory Brain Stem Response Thresholds and Latencies Elicited by Air- and Bone-Conducted Stimuli. Ear Hear. 1993;14:85. doi: 10.1097/00003446-199304000-00003.

Source: PubMed

3
購読する