Gut Microbiome Alterations in COVID-19

Tao Zuo, Xiaojian Wu, Weiping Wen, Ping Lan, Tao Zuo, Xiaojian Wu, Weiping Wen, Ping Lan

Abstract

Since the outset of the coronavirus disease 2019 (COVID-19) pandemic, the gut microbiome in COVID-19 has garnered substantial interest, given its significant roles in human health and pathophysiology. Accumulating evidence is unveiling that the gut microbiome is broadly altered in COVID-19, including the bacterial microbiome, mycobiome, and virome. Overall, the gut microbial ecological network is significantly weakened and becomes sparse in patients with COVID-19, together with a decrease in gut microbiome diversity. Beyond the existence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the gut microbiome of patients with COVID-19 is also characterized by enrichment of opportunistic bacteria, fungi, and eukaryotic viruses, which are also associated with disease severity and presentation. Meanwhile, a multitude of symbiotic bacteria and bacteriophages are decreased in abundance in patients with COVID-19. Such gut microbiome features persist in a significant subset of patients with COVID-19 even after disease resolution, coinciding with 'long COVID' (also known as post-acute sequelae of COVID-19). The broadly-altered gut microbiome is largely a consequence of SARS-CoV-2infection and its downstream detrimental effects on the systemic host immunity and the gut milieu. The impaired host immunity and distorted gut microbial ecology, particularly loss of low-abundance beneficial bacteria and blooms of opportunistic fungi including Candida, may hinder the reassembly of the gut microbiome post COVID-19. Future investigation is necessary to fully understand the role of the gut microbiome in host immunity against SARS-CoV-2 infection, as well as the long-term effect of COVID-19 on the gut microbiome in relation to the host health after the pandemic.

Keywords: COVID-19; Gut; Immunity; Infection; Microbiome.

Copyright © 2021 The Author. Published by Elsevier B.V. All rights reserved.

Figures

Figure 1
Figure 1
Alterations in the gut bacterial, fungal, and viral microbiome in patients with COVID-19 The gut bacterial microbiome in COVID-19 is characterized by decreased diversity and richness, and persistent bacterial microbiome dysbiosis even after disease resolution. The gut mycobiome in COVID-19 is characterized by increased fecal fungal load and increased beta-diversity (more heterogeneous), and it is unstable over time and also persistently altered after disease resolution. SARS-CoV-2 shows infectivity in the gut. Delayed SARS-CoV-2 viral shedding and persistent gut virome dysbiosis are both present after disease resolution. The gastrointestinal tract epithelial barrier is impaired in a subset of COVID-19 patients. The figure is created with BioRender.com.

References

    1. Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323:1775–1776.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513.
    1. Liang W., Feng Z., Rao S., Xiao C., Xue X., Lin Z., et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 2020;69:1141–1143.
    1. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469.
    1. Xu Y.i., Li X., Zhu B., Liang H., Fang C., Gong Y., et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26:502–505.
    1. Le Bert N., Tan A.T., Kunasegaran K., Tham C.Y.L., Hafezi M., Chia A., et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584:457–462.
    1. Karlsson AC, Humbert M, Buggert M. The known unknowns of T cell immunity to COVID-19. Sci Immunol 2020;5:eabe8063.
    1. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 2021;184:1895–913.e19.
    1. Chassaing B., Kumar M., Baker M.T., Singh V., Vijay-Kumar M. Mammalian gut immunity. Biomed J. 2014;37:246–258.
    1. Zuo T., Kamm M.A., Colombel J.F., Ng S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2018;15:440–452.
    1. Yeoh Y.K., Zuo T., Lui G.C.Y., Zhang F., Liu Q., Li A.Y., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706.
    1. Zuo T., Liu Q., Zhang F., Yeoh Y.K., Wan Y., Zhan H., et al. Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity. Microbiome. 2021;9:91.
    1. Zuo T., Zhan H., Zhang F., Liu Q., Tso E.Y., Lui G.C., et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020;159:1302–1310.e5.
    1. Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159:944–955.e8.
    1. Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front Immunol 2021;12:686240.
    1. Elsayed S., Zhang K. Human infection caused by Clostridium hathewayi. Emerg Infect Dis. 2004;10:1950–1952.
    1. tamilselvi R., Dakshinamoorthy M., Venkatesh A., Arumugam K. A literature review on dental caries vaccine-a prevention strategy. Indian J Public Health Res Dev. 2019;10:3041–3043.
    1. Tang L., Gu S., Gong Y., Li B., Lu H., Li Q., et al. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering. 2020;6:1178–1184.
    1. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis 2020;71:2669–78.
    1. Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–232.
    1. Montefusco L., Ben Nasr M., D’Addio F., Loretelli C., Rossi A., Pastore I., et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3:774–785.
    1. Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594:259–264.
    1. Weng J., Li Y., Li J., Shen L., Zhu L., Liang Y., et al. Gastrointestinal sequelae 90 days after discharge for COVID-19. Lancet Gastroenterol Hepatol. 2021;6:344–346.
    1. Wang Y, Zhang L, Sang L, Ye F, Ruan S, Zhong B, et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest 2020;130:5235–44.
    1. Gaebler C., Wang Z., Lorenzi J.C.C., Muecksch F., Finkin S., Tokuyama M., et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591:639–644.
    1. Chen Y, Gu S, Chen Y, Lu H, Shi D, Guo J, et al. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut. 2022;71:222–225.
    1. Sokol H., Contreras V., Maisonnasse P., Desmons A., Delache B., Sencio V., et al. SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes. 2021;13:1–19.
    1. Ren Z., Wang H., Cui G., Lu H., Wang L., Luo H., et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut. 2021;70:1253–1265.
    1. Lahti L., Salojärvi J., Salonen A., Scheffer M., de Vos W.M. Tipping elements in the human intestinal ecosystem. Nat Commun. 2014;5:4344.
    1. Buffie C.G., Pamer E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
    1. Finlay B.B., Amato K.R., Azad M., Blaser M.J., Bosch T.C.G., Chu H., et al. The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proc Natl Acad Sci U S A. 2021;118 e2010217118.
    1. Cao J., Wang C., Zhang Y., Lei G., Xu K., Zhao N., et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes. 2021;13:1–21.
    1. Zuo T., Liu Q., Zhang F., Lui G.C.Y., Tso E.Y., Yeoh Y.K., et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70:276–284.
    1. Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.
    1. Verdu E.F., Hayes C.L., O’Mahony S.M. In: The gut-brain axis: dietary, probiotic, and prebiotic interventions on the microbiota. Hyland H., Stanton C., editors. Elsevier Inc.; Academic Press: 2016. Importance of the microbiota in early life and influence on future health; pp. 159–184.
    1. Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front Immunol. 2021;12:686240.
    1. Effenberger M., Grabherr F., Mayr L., Schwaerzler J., Nairz M., Seifert M., et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020;69:1543–1544.
    1. Faust K., Sathirapongsasuti J.F., Izard J., Segata N., Gevers D., Raes J., et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
    1. Zuo T., Wong S.H., Lam K., Lui R., Cheung K., Tang W., et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018;67:634–643.
    1. Zuo T., Lu X.J., Zhang Y., Cheung C.P., Lam S., Zhang F., et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 2019;68:1169–1179.
    1. Domínguez-Díaz C., García-Orozco A., Riera-Leal A., Padilla-Arellano J.R., Fafutis-Morris M. Microbiota and its role on viral evasion: is it with us or against us? Front Cell Infect Microbiol. 2019;9:256.
    1. Kuss S.K., Best G.T., Etheredge C.A., Pruijssers A.J., Frierson J.M., Hooper L.V., et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334:249–252.
    1. Jones M.K., Watanabe M., Zhu S., Graves C.L., Keyes L.R., Grau K.R., et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346:755–759.
    1. Baldridge M.T., Nice T.J., McCune B.T., Yokoyama C.C., Kambal A., Wheadon M., et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science. 2015;347:266–269.
    1. Enaud R., Prevel R., Ciarlo E., Beaufils F., Wieërs G., Guery B., et al. The gut–lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9.
    1. Dang A.T., Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019;12:843–850.
    1. Chiu L., Bazin T., Truchetet M.E., Schaeverbeke T., Delhaes L., Pradeu T. Protective microbiota: from localized to long-reaching co-immunity. Front Immunol. 2017;8:1678.
    1. Trompette A., Gollwitzer E.S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-Bru C., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–166.
    1. Bingula R., Filaire M., Radosevic-Robin N., Bey M., Berthon J.Y., Bernalier-Donadille A., et al. Desired turbulence? Gut–lung axis, immunity, and lung cancer. J Oncol. 2017;2017:1–15.
    1. Anand S., Mande S.S. Diet, microbiota and gut–lung connection. Front Microbiol. 2018;9:2147.
    1. Cait A., Hughes M.R., Antignano F., Cait J., Dimitriu P.A., Maas K.R., et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 2018;11:785–795.
    1. Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581:221–224.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8.
    1. Wang J., Zhao S., Liu M., Zhao Z., Xu Y., Wang P., et al. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism. medRxiv. 2020 2020.02.05.20020545.
    1. Hashimoto T., Perlot T., Rehman A., Trichereau J., Ishiguro H., Paolino M., et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–481.
    1. Geva-Zatorsky N., Sefik E., Kua L., Pasman L., Tan T.G., Ortiz-Lopez A., et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168:928–943.e11.
    1. Vatanen T., Kostic A.D., d’Hennezel E., Siljander H., Franzosa E.A., Yassour M., et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–853.
    1. Yoshida N., Emoto T., Yamashita T., Watanabe H., Hayashi T., Tabata T., et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138:2486–2498.
    1. Cai Q., Chen F., Wang T., Luo F., Liu X., Wu Q., et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care. 2020;43:1392–1398.
    1. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8:e21.
    1. Hill M.A., Mantzoros C., Sowers J.R. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217.
    1. Sencio V., Barthelemy A., Tavares L.P., Machado M.G., Soulard D., Cuinat C., et al. Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Rep. 2020;30:2934–2947.e6.
    1. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–724.
    1. Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294.
    1. van Tilburg Bernardes E., Pettersen V.K., Gutierrez M.W., Laforest-Lapointe I., Jendzjowsky N.G., Cavin J.B., et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11:2577.
    1. Santus W., Devlin J.R., Behnsen J., Ottemann K.M. Crossing kingdoms: how the mycobiota and fungal–bacterial interactions impact host health and disease. Infect Immun. 2021;89
    1. Lv L., Gu S., Jiang H., Yan R., Chen Y., Luo R., et al. Gut mycobiota alterations in patients with COVID-19 and H1N1 and associations with immune and gastrointestinal symptoms. Commun Biol. 2021;4:480.
    1. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–481.
    1. Lescure F.X., Bouadma L., Nguyen D., Parisey M., Wicky P.H., Behillil S., et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020;20:697–706.
    1. Kosmidis C., Denning D.W. The clinical spectrum of pulmonary aspergillosis. Thorax. 2015;70:270–277.
    1. Baba R., Takaoka H., Kamo T., Arai D., Takahashi H., Masaki K., et al. Clinical interpretations and therapeutic significance of isolating Aspergillus species from respiratory specimens. Am J Respir Crit Care Med. 2020;201:A2117.
    1. Cox M.J., Loman N., Bogaert D., O’Grady J. Co-infections: potentially lethal and unexplored in COVID-19. Lancet Microbe. 2020;1:e11.
    1. Pemán J., Ruiz-Gaitán A., García-Vidal C., Salavert M., Ramírez P., Puchades F., et al. Fungal co-infection in COVID-19 patients: should we be concerned? Rev Iberoam Micol. 2020;37:41–46.
    1. Song G., Liang G., Liu W. Fungal co-infections associated with global COVID-19 pandemic: a clinical and diagnostic perspective from China. Mycopathologia. 2020;185:599–606.
    1. Zuo T., Wong S.H., Cheung C.P., Lam K., Lui R., Cheung K., et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.
    1. Downward J.R.E., Falkowski N.R., Mason K.L., Muraglia R., Huffnagle G.B. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3:2191.
    1. Rao C., Coyte K.Z., Bainter W., Geha R.S., Martin C.R., Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021;591:633–638.
    1. Sonoyama K., Miki A., Sugita R., Goto H., Nakata M., Yamaguchi N. Gut colonization by Candida albicans aggravates inflammation in the gut and extra-gut tissues in mice. Med Mycol. 2011;49:237–247.
    1. Kumamoto C.A. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14:386–391.
    1. Virgin H. The virome in mammalian physiology and disease. Cell. 2014;157:142–150.
    1. Neil J.A., Cadwell K. The intestinal virome and immunity. J Immunol. 2018;201:1615–1624.
    1. Liang G., Bushman F.D. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021:1–14.
    1. Gogokhia L., Buhrke K., Bell R., Hoffman B., Brown D.G., Hanke-Gogokhia C., et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25:285–299.e8.
    1. Norman J.M., Handley S.A., Baldridge M.T., Droit L., Liu C.Y., Keller B.C., et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–460.
    1. Diard M., Bakkeren E., Cornuault J.K., Moor K., Hausmann A., Sellin M.E., et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science. 2017;355:1211–1215.

Source: PubMed

3
購読する