Alzheimer's disease: diagnostics, prognostics and the road to prevention

Iris Grossman, Michael W Lutz, Donna G Crenshaw, Ann M Saunders, Daniel K Burns, Allen D Roses, Iris Grossman, Michael W Lutz, Donna G Crenshaw, Ann M Saunders, Daniel K Burns, Allen D Roses

Abstract

Alzheimer's disease (AD) presents one of the leading healthcare challenges of the 21st century, with a projected worldwide prevalence of >107 million cases by 2025. While biomarkers have been identified, which may correlate with disease progression or subtype for the purpose of disease monitoring or differential diagnosis, a biomarker for reliable prediction of late onset disease risk has not been available until now. This deficiency in reliable predictive biomarkers, coupled with the devastating nature of the disease, places AD at a high priority for focus by predictive, preventive and personalized medicine. Recent data, discovered using phylogenetic analysis, suggest that a variable length poly-T sequence polymorphism in the TOMM40 gene, adjacent to the APOE gene, is predictive of risk of AD age-of-onset when coupled with a subject's current age. This finding offers hope for reliable assignment of disease risk within a 5-7 year window, and is expected to guide enrichment of clinical trials in order to speed development of preventative medicines.

Figures

Fig. 1
Fig. 1
Alzheimer’s disease age of onset curves by APOE genotype, based on the information available in 1994 (adopted from [28]). Age of onset for LOAD, sporadic AD and control subjects as published in 1994 [28]. The age-of-onset is scored as a function of the individual’s APOE genotype. Onset curves were estimated by Kaplan-Meier product limit distributions
Fig. 2
Fig. 2
Hypothetical Alzheimer’s disease age of onset curves by TOMM40-APOE haplotype, based on the information available today (February 2010). We propose that each of the original AD age of onset curves is in fact a composite of sub-curves that are defined by TOMM40 genotype [70, 79]. The APOE4/4 curve would be unchanged, as the vast majority of APOE4 alleles carry the long (L) TOMM40 rs10524523 allele. There would be two curves for APOE3/4 individuals due to the presence of either a short (Sh) or a very long (VL) rs10524523 polymorphism linked to APOE3. There would likely be three curves for APOE3/3 individuals due to the possible combination of alleles at rs10524523, i.e. short/short (Sh/Sh), short/very long (Sh/VL), and very long/very long (VL/VL)

References

    1. Matchar DB, Thakur ME, Grossman I, et al. Testing for cytochrome P450 polymorphisms in adults with non-psychotic depression treated with selective serotonin reuptake inhibitors (SSRIs) Evid Rep Technol Assess (Full Rep) 2007;146:1–77.
    1. ACCE model process for evaluating genetic tests. 2009. (Accessed at .)
    1. Hughes B. The comparative effectiveness challenge. Nat Rev Drug Discov. 2009;8(4):261–3. doi: 10.1038/nrd2866.
    1. Ginsburg G, SWillard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154(6):277–87. doi: 10.1016/j.trsl.2009.09.005.
    1. FDA. Drug-diagnostic co-development concept paper (draft). In; 2005.
    1. Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):1119–22. doi: 10.1001/archneur.60.8.1119.
    1. National Institute Aging (2005-2006) Progress Report on Alzheimers Disease. PMID:
    1. Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91. doi: 10.1016/j.jalz.2007.04.381.
    1. Organization W H. The global burden of disease (2004 update). In. Geneva, Switzerland: WHO Press; 2004.
    1. Blennow K, de Leon M, JZetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403. doi: 10.1016/S0140-6736(06)69113-7.
    1. West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996;120(2):272–92. doi: 10.1037/0033-2909.120.2.272.
    1. Visser PJ, Verhey FR. Mild cognitive impairment as predictor for Alzheimer’s disease in clinical practice: effect of age and diagnostic criteria. Psychol Med. 2008;38(1):113–22. doi: 10.1017/S0033291707000554.
    1. Warfarin dosing. 2008. (Accessed at .)
    1. Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74. doi: 10.1001/archpsyc.63.2.168.
    1. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6. doi: 10.1038/349704a0.
    1. Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754–60. doi: 10.1038/375754a0.
    1. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973–7. doi: 10.1126/science.7638622.
    1. Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376(6543):775–8. doi: 10.1038/376775a0.
    1. Campion D, Dumanchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999;65(3):664–70. doi: 10.1086/302553.
    1. Pericak-Vance MA, Grubber J, Bailey LR, et al. Identification of novel genes in late-onset Alzheimer’s disease. Exp Gerontol. 2000;35(9–10):1343–52. doi: 10.1016/S0531-5565(00)00196-0.
    1. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3. doi: 10.1126/science.8346443.
    1. Rocchi A, Pellegrini S, Siciliano G, et al. Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull. 2003;61(1):1–24. doi: 10.1016/S0361-9230(03)00067-4.
    1. Bertram LTanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115(6):1449–57. doi: 10.1172/JCI24761.
    1. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–30. doi: 10.1126/science.3283935.
    1. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81. doi: 10.1073/pnas.90.5.1977.
    1. Bertram LTanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9(10):768–78. doi: 10.1038/nrn2494.
    1. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56. doi: 10.1001/jama.278.16.1349.
    1. Roses AD. Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. J Neuropathol Exp Neurol. 1994;53(5):429–37. doi: 10.1097/00005072-199409000-00002.
    1. Abraham R, Moskvina V, Sims R, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44. doi: 10.1186/1755-8794-1-44.
    1. Li H, Wetten S, Li L, et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 2008;65(1):45–53. doi: 10.1001/archneurol.2007.3.
    1. Yu C-E, Seltman H, Peskind ER, et al. Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer’s disease: patterns of linkage disequilibrium and disease/marker association. Genomics. 2007;89(6):655–65. doi: 10.1016/j.ygeno.2007.02.002.
    1. Waring SC, Rosenberg RN. Genome-wide association studies in Alzheimer Disease. Arch Neurol. 2008;65(3):329–34. doi: 10.1001/archneur.65.3.329.
    1. Beecham GW, Martin ER, Li YJ, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet. 2009;84(1):35–43.
    1. Waring SC, Rosenberg RN. Genome-wide association studies in Alzheimer disease. Arch Neurol. 2008;65(3):329–34. doi: 10.1001/archneur.65.3.329.
    1. Yu CE, Seltman H, Peskind ER, et al. Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer’s disease: patterns of linkage disequilibrium and disease/marker association. Genomics. 2007;89(6):655–65. doi: 10.1016/j.ygeno.2007.02.002.
    1. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44. doi: 10.1038/nrn2620.
    1. Cedazo-Minguez A. Apolipoprotein E and Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med. 2007;11(6):1227–38. doi: 10.1111/j.1582-4934.2007.00130.x.
    1. Bazrgar M, Karimi M, Fathzadeh M, et al. Apolipoprotein E polymorphism in Southern Iran: E4 allele in the lowest reported amounts. Mol Biol Rep. 2008;35(4):495–9. doi: 10.1007/s11033-007-9113-3.
    1. Kok E, Haikonen S, Luoto T, et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol. 2009;65(6):650–7. doi: 10.1002/ana.21696.
    1. Mayeux R, Saunders AM, Shea S, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med. 1998;338(8):506–11. doi: 10.1056/NEJM199802193380804.
    1. Cichon S, Craddock N, Daly M, et al. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry. 2009;166(5):540–56. doi: 10.1176/appi.ajp.2008.08091354.
    1. Bertram L, McQueen MB, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23. doi: 10.1038/ng1934.
    1. Lyssenko VGroop L. Genome-wide association study for type 2 diabetes: clinical applications. Curr Opin Lipidol. 2009;20(2):87–91. doi: 10.1097/MOL.0b013e32832923af.
    1. McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diab Rep. 2009;9(2):164–71. doi: 10.1007/s11892-009-0027-4.
    1. Dickson SP, Wang K, Krantz I, et al. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8(1):e1000294. doi: 10.1371/journal.pbio.1000294.
    1. Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009;360(17):1696–8. doi: 10.1056/NEJMp0806284.
    1. Ioannidis JP, Thomas GDaly MJ. Validating, augmenting and refining genome-wide association signals. Nat Rev Genet. 2009;10(5):318–29. doi: 10.1038/nrg2544.
    1. Coon KD, Myers AJ, Craig DW, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68(4):613–18. doi: 10.4088/JCP.v68n0419.
    1. Potkin SG, Guffanti G, Lakatos A, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS One. 2009;4(8):e6501. doi: 10.1371/journal.pone.0006501.
    1. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93. doi: 10.1038/ng.440.
    1. Lambert JC, Heath S, Even G, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9. doi: 10.1038/ng.439.
    1. Heinzen EL, Need AC, Hayden KM et al. Genome-wide scan of copy number variation in late-onset Alzheimer's disease. J Alzheimers Dis. 2009. PMID: 19749422
    1. Carrasquillo MM, Zou F, Pankratz VS, et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat Genet. 2009;41(2):192–8. doi: 10.1038/ng.305.
    1. Grupe A, Abraham R, Li Y, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16(8):865–73. doi: 10.1093/hmg/ddm031.
    1. Reiman EM, Webster JA, Myers AJ, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54(5):713–20. doi: 10.1016/j.neuron.2007.05.022.
    1. Bertram L, Lange C, Mullin K, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83(5):623–32. doi: 10.1016/j.ajhg.2008.10.008.
    1. Blass JP, Gibson GE. Cerebrometabolic aspects of delirium in relationship to dementia. Dement Geriatr Cogn Disord. 1999;10(5):335–8. doi: 10.1159/000017165.
    1. Davis JN, Hunnicutt EJ, Jr CJC. A mitochondrial bottleneck hypothesis of Alzheimer’s disease. Mol Med Today. 1995;1(5):240–7. doi: 10.1016/S1357-4310(95)91532-X.
    1. Kessler J, Herholz K, Grond M, et al. Impaired metabolic activation in Alzheimer’s disease: a PET study during continuous visual recognition. Neuropsychologia. 1991;29(3):229–43. doi: 10.1016/0028-3932(91)90084-L.
    1. Blass JP. The mitochondrial spiral. An adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci. 2000;924:170–83.
    1. Castellani R, Hirai K, Aliev G, et al. Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res. 2002;70(3):357–60. doi: 10.1002/jnr.10389.
    1. Manczak M, Anekonda TS, Henson E, et al. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15(9):1437–49. doi: 10.1093/hmg/ddl066.
    1. Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45–53. doi: 10.1016/j.molmed.2007.12.002.
    1. Rui Y, Tiwari P, Xie Z, et al. Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci. 2006;26(41):10480–7. doi: 10.1523/JNEUROSCI.3231-06.2006.
    1. Devi L, Prabhu BM, Galati DF, et al. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057–68. doi: 10.1523/JNEUROSCI.1469-06.2006.
    1. Brodbeck J, Balestra ME, Saunders AM, et al. Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. Proc Natl Acad Sci U S A. 2008;105(4):1343–6. doi: 10.1073/pnas.0709906104.
    1. Chang S, Ran Ma T, Miranda RD, et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A. 2005;102(51):18694–9. doi: 10.1073/pnas.0508254102.
    1. Anandatheerthavarada HK, Biswas G, Robin MA, et al. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. 2003;161(1):41–54. doi: 10.1083/jcb.200207030.
    1. Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A. 2008;105(35):13145–50. doi: 10.1073/pnas.0806192105.
    1. Roses AD, Lutz MW, Amrine-Madsen H et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenom J. 2009. PMID: 20029386.
    1. Bekris LM, Millard SP, Galloway NM, et al. Multiple SNPs within and surrounding the apolipoprotein E gene influence cerebrospinal fluid apolipoprotein E protein levels. J Alzheimers Dis. 2008;13(3):255–66.
    1. Tachmazidou I, JDe VC, Iorio M. Genetic association mapping via evolution-based clustering of haplotypes. PLoS Genet. 2007;3(7):e111. doi: 10.1371/journal.pgen.0030111.
    1. Frazer KA, Murray SS, Schork NJ, et al. Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009;10(4):241–51. doi: 10.1038/nrg2554.
    1. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8(3):206–16. doi: 10.1038/nrg2063.
    1. Biswas TK, Getz GS. Position-specific inhibition of yeast mitochondrial transcription by a poly(T) sequence. J Mol Biol. 1998;275(4):547–60. doi: 10.1006/jmbi.1997.1483.
    1. Beyer K, Humbert J, Ferrer A, et al. A variable poly-T sequence modulates alpha-synuclein isoform expression and is associated with aging. J Neurosci Res. 2007;85(7):1538–46. doi: 10.1002/jnr.21270.
    1. Hegde S, Lenox LE, Lariviere A, et al. An intronic sequence mutated in flexed-tail mice regulates splicing of Smad5. Mamm Genome. 2007;18(12):852–60. doi: 10.1007/s00335-007-9074-9.
    1. Chu CS, Trapnell BC, Curristin S, et al. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993;3(2):151–6. doi: 10.1038/ng0293-151.
    1. Lutz MW, Crenshaw DG, Saunders AM et al. Perspectives: genetic variation at a single locus and age of onset for Alzheimer’s disease. Alzheimer’s and Dementia. 2010. PMID:
    1. Motter R, Vigo-Pelfrey C, Kholodenko D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol. 1995;38(4):643–8. doi: 10.1002/ana.410380413.
    1. Jagust WJ, Landau SM, Shaw LM, et al. Relationships between biomarkers in aging and dementia. Neurology. 2009;73(15):1193–9. doi: 10.1212/WNL.0b013e3181bc010c.
    1. Fernhoff PM. Newborn screening for genetic disorders. Pediatr Clin North Am. 2009;56(3):505–13. doi: 10.1016/j.pcl.2009.03.002.
    1. Rosner G, Rosner SOrr-Urtreger A. Genetic testing in Israel: an overview. Annu Rev Genomics Hum Genet. 2009;10:175–92. doi: 10.1146/annurev.genom.030308.111406.
    1. Hahn NM, Kelley MR, Klaunig JE, et al. Constitutional polymorphisms of prostate cancer: prognostic and diagnostic implications. Future Oncol. 2007;3(6):665–82. doi: 10.2217/14796694.3.6.665.
    1. Palomaki GE, Steinort K, Knight GJ, et al. Comparing three screening strategies for combining first- and second-trimester Down syndrome markers. Obstet Gynecol. 2006;107(2 Pt 1):367–75.
    1. Lalonde RG, Thomas R, Rachlis A et al. Successful implementation of a national HLA-B*5701 genetic testing service in Canada. Tissue Antigens. 2009. PMID: 19843279.
    1. Grossman I. Routine pharmacogenetic testing in clinical practice: dream or reality? Pharmacogenomics. 2007;8(10):1449–59. doi: 10.2217/14622416.8.10.1449.
    1. Roses AD. The medical and economic roles of pipeline pharmacogenetics: Alzheimer’s disease as a model of efficacy and HLA-B(*)5701 as a model of safety. Neuropsychopharmacology. 2009;34(1):6–17. doi: 10.1038/npp.2008.153.
    1. Berson A, Knobloch M, Hanan M, et al. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain. 2008;131(Pt 1):109–19.
    1. Podoly E, Shalev DE, Shenhar-Tsarfaty S, et al. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem. 2009;284(25):17170–9. doi: 10.1074/jbc.M109.004952.
    1. Sjogren M, Hesse C, Basun H, et al. Tacrine and rate of progression in Alzheimer’s disease–relation to ApoE allele genotype. J Neural Transm. 2001;108(4):451–8. doi: 10.1007/s007020170066.
    1. Choi SH, Kim SY, Na HR, et al. Effect of ApoE genotype on response to donepezil in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25(5):445–50. doi: 10.1159/000124752.
    1. Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res. 2007;4(4):479–500. doi: 10.2174/156720507781788846.
    1. Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol. 2006;62(9):721–6. doi: 10.1007/s00228-006-0168-1.
    1. Salloway S, Sperling R, Gilman S, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2009;73(24):2061–70. doi: 10.1212/WNL.0b013e3181c67808.
    1. Kaufer D, Gandy S. APOE {epsilon}4 and bapineuzumab: Infusing pharmacogenomics into Alzheimer disease therapeutics. Neurology. 2009;73(24):2052–3. doi: 10.1212/WNL.0b013e3181c6784a.
    1. Risner ME, Saunders AM, Altman JF, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006;6(4):246–54.
    1. Costantini LC, Barr LJ, Vogel JL, et al. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci. 2008;9(Suppl 2):S16. doi: 10.1186/1471-2202-9-S2-S16.
    1. Akkari PA, Swanson TW, Crenshaw DG, et al. Pipeline pharmacogenetics: a novel approach to integrating pharmaco-genetics into drug development. Curr Pharm Des. 2009;15(32):3754–63. doi: 10.2174/138161209789649538.

Source: PubMed

3
購読する