Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer's Disease on optical coherence tomography angiography

Yi Stephanie Zhang, Nina Zhou, Brianna Marie Knoll, Sahej Samra, Mallory R Ward, Sandra Weintraub, Amani A Fawzi, Yi Stephanie Zhang, Nina Zhou, Brianna Marie Knoll, Sahej Samra, Mallory R Ward, Sandra Weintraub, Amani A Fawzi

Abstract

Purpose: Patients with Alzheimer's Disease (AD) exhibit decreased retinal blood flow and vessel density (VD). However, it is not known whether these changes are also present in individuals with early AD (eAD) or amnestic type mild cognitive impairment (aMCI), an enriched pre-AD population with a higher risk for progressing to dementia. We performed a prospective case-control clinical study to investigate whether optical coherence tomography angiography (OCTA) parameters in the macula and disc are altered in those with aMCI and eAD.

Methods: This is a single center study of 32 participants. Individuals with aMCI/eAD (n = 16) were 1:1 matched to cognitively normal controls (n = 16). We evaluated OCTA images of the parafoveal superficial capillary plexus (SCP) and two vascular layers in the peripapillary region, the radial peripapillary capillary (RPC) and superficial vascular complex (SVC). Outcome vascular and structural parameters included VD, vessel length density (VLD), adjusted flow index (AFI) and structural retinal nerve fiber layer (RNFL) thickness. We compared these parameters between the two groups and examined the correlation between OCTA parameters and cognitive performance on the Montreal Cognitive Assessment (MoCA).

Results: Cognitively impaired participants demonstrated statistically significant decrease in parafoveal SCP VD and AFI as compared to controls, but no statistically significant difference in peripapillary parameters. Furthermore, we found a significant positive correlation between MoCA scores for the entire study cohort and both the parafoveal SCP VD and peripapillary RPC VLD.

Conclusion: OCTA shows significant decline in parafoveal flow and VD in individuals with early cognitive impairment related to AD, suggesting that these parameters could have potential utility as early disease biomarkers. In contrast, the presence of larger vascular channels in the peripapillary region may have obscured subtle capillary changes in that region. Overall, the correlation between vascular OCTA parameters and cognitive performance supports further OCTA studies in this population.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Optical coherence tomography angiography (OCTA)…
Fig 1. Optical coherence tomography angiography (OCTA) segmentation of the disc and macula.
(A) shows a 4.5 x 4.5mm2en face OCTA image of the radial peripapillary capillary (RPC) centered on the optic disc of a healthy control, and (D) shows the cross-section segmentation of the RPC. (B) shows the en face image of the superficial vascular complex (SVC) segmentation obtained from the same individual with (E) showing the cross-section of SVC. (C) shows 3.0 x 3.0mm2en face scan of the superficial capillary plexus (SCP) centered on the of the fovea of the same individual with (F) showing the cross-section segmentation of the SCP.
Fig 2. Parafoveal and peripapillary image analysis.
Fig 2. Parafoveal and peripapillary image analysis.
A healthy control’s angiograms show the superficial capillary plexus (SCP) of the macula with delineation of the parafovea between rings of 1.0mm and 3.0mm (A), after binarization of parafoveal vessels based on a background defined by the foveal avascular zone (B), and after skeletonizing all vessels to be one pixel wide (C). Bottom row shows the radial papillary capillary (RPC) layer of the same individual with the peripapillary area between rings of 2.0mm and 4.0mm centered on the optic disc and the superior quadrant of the peripapillary delineated in orange (D). Thresholding and binarization with the Phansalkar method in the peripapillary are shown (E). The large vessel masks in RPC (F) was removed from RPC images to obtain the microcapillary vessel density.

References

    1. Prince M, Bryce R, Ferri C. World Alzheimer Report 2011: The benefits of early diagnosis and intervention. Alzheimer Disease International. 2011.
    1. Curcio CA. Viewing Retinal Vasculature in Alzheimer Disease. JAMA Ophthalmol. 2018;136(11):1249–50. Epub 2018/10/24. 10.1001/jamaophthalmol.2018.3569 .
    1. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):280–92. Epub 2011/04/26. 10.1016/j.jalz.2011.03.003 ; PubMed Central PMCID: PMCPMC3220946.
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):270–9. Epub 2011/04/26. 10.1016/j.jalz.2011.03.008
    1. Fischer P, Jungwirth S, Zehetmayer S, Weissgram S, Hoenigschnabl S, Gelpi E, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology. 2007;68(4):288–91. Epub 2007/01/24. 10.1212/01.wnl.0000252358.03285.9d .
    1. Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, et al. Preclinical Alzheimer's disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12(10):957–65. Epub 2013/09/10. 10.1016/S1474-4422(13)70194-7
    1. Sharma N, Singh AN. Exploring Biomarkers for Alzheimer's Disease. J Clin Diagn Res. 2016;10(7):KE01–6. Epub 2016/09/16. 10.7860/JCDR/2016/18828.8166
    1. Handels RLH, Wimo A, Dodel R, Kramberger MG, Visser PJ, Molinuevo JL, et al. Cost-Utility of Using Alzheimer's Disease Biomarkers in Cerebrospinal Fluid to Predict Progression from Mild Cognitive Impairment to Dementia. J Alzheimers Dis. 2017;60(4):1477–87. Epub 2017/10/31. 10.3233/JAD-170324 .
    1. Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci. 2000;41(5):1217–28. Epub 2001/02/07. .
    1. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44–53. Epub 2012/11/21. 10.1038/nrneurol.2012.227 .
    1. Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. 10.1016/j.preteyeres.2017.07.002 .
    1. Jiang H, Liu Y, Wei Y, Shi Y, Wright CB, Sun X, et al. Impaired retinal microcirculation in patients with Alzheimer's disease. PLoS One. 2018;13(2):e0192154 Epub 2018/02/03. 10.1371/journal.pone.0192154 .
    1. Feke GT, Hyman BT, Stern RA, Pasquale LR. Retinal blood flow in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement (Amst). 2015;1(2):144–51. 10.1016/j.dadm.2015.01.004 .
    1. Park JJ, Soetikno BT, Fawzi AA. Characterization of the Middle Capillary Plexus Using Optical Coherence Tomography Angiography in Healthy and Diabetic Eyes. Retina. 2016;36(11):2039–50. Epub 2016/10/25. 10.1097/IAE.0000000000001077 .
    1. Nesper PL, Fawzi AA. Human Parafoveal Capillary Vascular Anatomy and Connectivity Revealed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2018;59(10):3858–67. Epub 2018/08/04. 10.1167/iovs.18-24710
    1. Blanks JC, Torigoe Y, Hinton DR, Blanks RH. Retinal pathology in Alzheimer's disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging. 1996;17(3):377–84. Epub 1996/05/01. 10.1016/0197-4580(96)00010-3. .
    1. Cheung CY, Ong YT, Hilal S, Ikram MK, Low S, Ong YL, et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 2015;45(1):45–56. Epub 2014/11/28. 10.3233/JAD-141659 .
    1. Hinton DR, Sadun AA, Blanks JC, Miller CA. Optic-nerve degeneration in Alzheimer's disease. N Engl J Med. 1986;315(8):485–7. Epub 1986/08/21. 10.1056/NEJM198608213150804 .
    1. Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease. JCI Insight. 2017;2(16). Epub 2017/08/18. 10.1172/jci.insight.93621
    1. Jiang H, Wei Y, Shi Y, Wright CB, Sun X, Gregori G, et al. Altered Macular Microvasculature in Mild Cognitive Impairment and Alzheimer Disease. J Neuroophthalmol. 2018;38(3):292–8. Epub 2017/10/19. 10.1097/WNO.0000000000000580
    1. Bulut M, Kurtulus F, Gozkaya O, Erol MK, Cengiz A, Akidan M, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia. Br J Ophthalmol. 2018;102(2):233–7. Epub 2017/06/11. 10.1136/bjophthalmol-2017-310476 .
    1. O’Bryhim BE, Apte R, Kung N, Coble D, Van Stavern GP. Association of Preclinical Alzheimer Disease With Optical Coherence Tomographic Angiography Findings. JAMA Ophthalmol. 2018(136):1242–8. Epub 2018/10/24. 10.1001/jamaophthalmol.2018.3556
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9. Epub 2011/04/26. 10.1016/j.jalz.2011.03.005 ; PubMed Central PMCID: PMCPMC3312024.
    1. Jeste DV, Palmer BW, Appelbaum PS, Golshan S, Glorioso D, Dunn LB, et al. A new brief instrument for assessing decisional capacity for clinical research. Arch Gen Psychiatry. 2007;64(8):966–74. Epub 2007/08/08. 10.1001/archpsyc.64.8.966 .
    1. Monsell SE, Dodge HH, Zhou XH, Bu Y, Besser LM, Mock C, et al. Results From the NACC Uniform Data Set Neuropsychological Battery Crosswalk Study. Alzheimer Dis Assoc Disord. 2016;30(2):134–9. Epub 2015/10/21. 10.1097/WAD.0000000000000111
    1. Kim SY, Karlawish JH, Caine ED. Current state of research on decision-making competence of cognitively impaired elderly persons. Am J Geriatr Psychiatry. 2002;10(2):151–65. Epub 2002/04/02. .
    1. Weintraub S, Besser L, Dodge HH, Teylan M, Ferris S, Goldstein FC, et al. Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord. 2018;32(1):10–7. Epub 2017/12/15. 10.1097/WAD.0000000000000223
    1. Weintraub S, Salmon D, Mercaldo N, Ferris S, Graff-Radford NR, Chui H, et al. The Alzheimer's Disease Centers' Uniform Data Set (UDS): the neuropsychologic test battery. Alzheimer Dis Assoc Disord. 2009;23(2):91–101. Epub 2009/05/29. 10.1097/WAD.0b013e318191c7dd
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. Epub 2005/04/09. 10.1111/j.1532-5415.2005.53221.x .
    1. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4. Epub 1993/11/01. .
    1. Gold DA. An examination of instrumental activities of daily living assessment in older adults and mild cognitive impairment. J Clin Exp Neuropsychol. 2012(34):11–34. Epub 2011/11/08. 10.1080/13803395.2011.614598 .
    1. Johnson N, Barion A, Rademaker A, Rehkemper G, Weintraub S. The Activities of Daily Living Questionnaire: a validation study in patients with dementia. Alzheimer Dis Assoc Disord. 2004;18(4):223–30. Epub 2004/12/14. .
    1. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25. Epub 2012/03/16. 10.1364/OE.20.004710
    1. Phansalkar N, More, S., Sabale, A., Joshi, M. Adaptive Local Thresholding for Detection of Nuclei in Diversely Stained Cytology Images. In: 2011 International Conference on Communications and Signal Processing IEEE. 2011:218–20. 10.1109/ICCSP.2011.5739305
    1. Nelis P, Kleffner I, Burg MC, Clemens CR, Alnawaiseh M, Motte J, et al. OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep. 2018;8(1):8148 Epub 2018/05/29. 10.1038/s41598-018-26475-5
    1. Tang FY, Ng DS, Lam A, Luk F, Wong R, Chan C, et al. Determinants of Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes. Sci Rep. 2017;7(1):2575 pub 2017/06/02. 10.1038/s41598-017-02767-0
    1. Scripsema NK, Garcia PM, Bavier RD, Chui TY, Krawitz BD, Mo S, et al. Optical Coherence Tomography Angiography Analysis of Perfused Peripapillary Capillaries in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma. Invest Ophthalmol Vis Sci. 2016;57(9):OCT611–OCT20. Epub 2016/10/16. 10.1167/iovs.15-18945 .
    1. Nesper PL, Roberts PK, Onishi AC, Chai H, Liu L, Jampol LM, et al. Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58 (6):BIO307–BIO15. Epub 2017/10/24. 10.1167/iovs.17-21787
    1. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3(12):3127–37. Epub 2012/12/18. 10.1364/BOE.3.003127
    1. Chu Z, Lin J, Gao C, Xin C, Zhang Q, Chen CL, et al. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J Biomed Opt. 2016;21(6):66008 Epub 2016/06/11. 10.1117/1.JBO.21.6.066008
    1. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32. Epub 2014/03/19. 10.1016/j.ophtha.2014.01.021
    1. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, et al. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep. 2017;7(42201):42201 Epub 2017/02/12. 10.1038/srep42201
    1. Bell MA, Ball MJ. Neuritic plaques and vessels of visualcortex in aging and Alzheimer’s dementia. Neurobiol Aging 1990;11(359–70). .
    1. Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol. 2005;57(6):789–94. Epub 2005/06/02. 10.1002/ana.20493 .
    1. Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology. 1998;50(6):1563–71. Epub 1998/06/20. .
    1. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38. Epub 2011/11/04. 10.1038/nrn3114
    1. Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, et al. Inhibition of angiogenesis by Abeta peptides. Angiogenesis. 2004;7(1):75–85. Epub 2004/08/11. 10.1023/B: .
    1. Linderman RE, Muthiah MN, Omoba SB, Litts K, Tarima S, Visotcky A, et al. Variability of Foveal Avascular Zone Metrics Derived From Optical Coherence Tomography Angiography Images. Transl Vis Sci Technol. 2018;7(5):20 Epub 2018/10/04. 10.1167/tvst.7.5.20
    1. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, et al. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011;52(1):625–34. Epub 2010/09/24. 10.1167/iovs.10-5886
    1. Sampson DM, Gong P, An D, Menghini M, Hansen A, Mackey DA, et al. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58(7):3065–72. Epub 2017/06/18. 10.1167/iovs.17-21551 .
    1. Coppola G, Di Renzo A, Ziccardi L, Martelli F, Fadda A, Manni G, et al. Optical Coherence Tomography in Alzheimer's Disease: A Meta-Analysis. PLoS One. 2015;10(8):e0134750 Epub 2015/08/08. 10.1371/journal.pone.0134750
    1. Jia Y, Simonett JM, Wang J, Hua X, Liu L, Hwang TS, et al. Wide-Field OCT Angiography Investigation of the Relationship Between Radial Peripapillary Capillary Plexus Density and Nerve Fiber Layer Thickness. Invest Ophthalmol Vis Sci. 2017;58(12):5188–94. Epub 2017/10/20. 10.1167/iovs.17-22593
    1. Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease. Transl Psychiatry. 2013;3:e233 Epub 2013/02/28. 10.1038/tp.2012.150
    1. Cheung CY, Ong YT, Ikram MK, Ong SY, Li X, Hilal S, et al. Microvascular network alterations in the retina of patients with Alzheimer's disease. Alzheimers Dement. 2014;10(2):135–42. Epub 2014/01/21. 10.1016/j.jalz.2013.06.009 .
    1. Zhu L, Zong Y, Yu J, Jiang C, He Y, Jia Y, et al. Reduced Retinal Vessel Density in Primary Angle Closure Glaucoma: A Quantitative Study Using Optical Coherence Tomography Angiography. J Glaucoma. 2018;27(4):322–7. Epub 2018/02/09. 10.1097/IJG.0000000000000900
    1. Lad EM, Mukherjee D, Stinnett SS, Cousins SW, Potter GG, Burke JR, et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease. PLoS One. 2018;13(2):e0192646 Epub 2018/02/09. 10.1371/journal.pone.0192646
    1. Thomson KL, Yeo JM, Waddell B, Cameron JR, Pal S. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement (Amst). 2015;1(2):136–43. Epub 2016/05/31. 10.1016/j.dadm.2015.03.001
    1. Knoll B, Simonett J, Volpe NJ, Farsiu S, Ward M, Rademaker A, et al. Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: Case-control study and meta-analysis. Alzheimers Dement (Amst). 2016;4:85–93. Epub 2016/10/11. 10.1016/j.dadm.2016.07.004
    1. Lim JS, Lee JY, Kwon HM, Lee YS. The correlation between cerebral arterial pulsatility and cognitive dysfunction in Alzheimer's disease patients. J Neurol Sci. 2017;373:285–8. Epub 2017/01/31. 10.1016/j.jns.2017.01.001 .
    1. Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zhang F, et al. Age-Related Alterations in the Retinal Microvasculature, Microcirculation, and Microstructure. Invest Ophthalmol Vis Sci. 2017;58(9):3804–17. Epub 2017/07/27. 10.1167/iovs.17-21460
    1. Leung H, Wang JJ, Rochtchina E, Wong TY, Klein R, Hubbard L, et al. Relationships between Age, Blood Pressure, and Retinal Vessel Diameters in an Older Population. Invest Ophthalmol Vis Sci. 2003;44(7):2900–4. 10.1167/iovs.02-1114 PubMed PMID: WOS:000183795800013.
    1. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ, Cirrus OCTNDSG. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol. 2012;130(3):312–8. Epub 2012/03/14. 10.1001/archopthalmol.2011.1576
    1. Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Invest Ophthalmol Vis Sci. 2016;57(9):OCT224–34.Epub 2016/07/15. 10.1167/iovs.15-18869 .

Source: PubMed

3
購読する