Efficacy study of olmesartan medoxomil on coronary atherosclerosis progression and epicardial adipose tissue volume reduction in patients with coronary atherosclerosis detected by coronary computed tomography angiography: study protocol for a randomized controlled trial

Ying Zhou, Feng Tian, Jing Wang, Jun-Jie Yang, Tao Zhang, Jing Jing, Yun-Dai Chen, Ying Zhou, Feng Tian, Jing Wang, Jun-Jie Yang, Tao Zhang, Jing Jing, Yun-Dai Chen

Abstract

Background: Epicardial adipose tissue (EAT) is a newly discovered independent risk factor for coronary atherosclerosis. There is a scarcity of information on the reduction of EAT volume to reduce atherosclerosis risk. Coronary computed tomography angiography (CCTA) has emerged as a noninvasive imaging method for the analysis of coronary atherosclerosis and EAT volume. The purpose of this trial is to determine whether olmesartan medoxomil is effective at both treatment of coronary atherosclerosis progression and EAT volume reduction in patients with coronary atherosclerosis detected by CCTA.

Methods/design: This study is a prospective, single-center, open-label, randomized controlled clinical trial aimed at exploring the efficacy of olmesartan medoxomil on coronary atherosclerosis and EAT. A total of 194 patients with coronary stenosis greater than 30 % and less than 70 % detected by CCTA will be randomly divided into olmesartan medoxomil or conventional antihypertensive medication groups (1:1 ratio). The primary outcome measures include coronary atherosclerosis progression and EAT volume reduction, as detected by CCTA at 12 months. The secondary outcome measures include the levels of blood lipids, glucose, high-sensitivity C-reactive protein, IL-6, monocyte chemotactic protein 1, TNF-α, matrix metalloproteinase 9, NO, endothelin 1, adiponectin, and leptin at baseline and after 6 and 12 months.

Discussion: Treatments aimed at reducing EAT volume can eventually achieve an antiatherosclerotic effect. This is the first trial designed to explore the effect of olmesartan medoxomil on both coronary atherosclerosis progression and EAT volume reduction in patients with coronary atherosclerosis detected by CCTA.

Trial registration: ClinicalTrials.gov: NCT02360956 .

Figures

Fig. 1
Fig. 1
Study flowchart. CCTA, coronary computed tomography angiography; DBP, diastolic blood pressure; EAT, epicardial adipose tissue; SBP, systolic blood pressure

References

    1. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43. doi: 10.1038/ncpcardio0319.
    1. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22(11):450–7. doi: 10.1016/j.tem.2011.07.003.
    1. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907–17. doi: 10.1016/j.ahj.2007.03.019.
    1. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117(5):605–13. doi: 10.1161/CIRCULATIONAHA.107.743062.
    1. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, et al. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis. 2012;220(1):223–30. doi: 10.1016/j.atherosclerosis.2011.09.041.
    1. Rajani R, Shmilovich H, Nakazato R, Nakanishi R, Otaki Y, Cheng VY, et al. Relationship of epicardial fat volume to coronary plaque, severe coronary stenosis, and high-risk coronary plaque features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr. 2013;7(2):125–32. doi: 10.1016/j.jcct.2013.02.003.
    1. Mahabadi AA, Berg MH, Lehmann N, Kalsch H, Bauer M, Kara K, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61(13):1388–95. doi: 10.1016/j.jacc.2012.11.062.
    1. Inoue K, Motoyama S, Sarai M, Sato T, Harigaya H, Hara T, et al. Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imaging. 2010;3(7):691–8. doi: 10.1016/j.jcmg.2010.04.011.
    1. Zeb I, Li D, Nasir K, Malpeso J, Batool A, Flores F. Effect of statin treatment on coronary plaque progression – a serial coronary CT angiography study. Atherosclerosis. 2013;231(2):198–204. doi: 10.1016/j.atherosclerosis.2013.08.019.
    1. Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124(21):2338–49. doi: 10.1161/CIRCULATIONAHA.111.041418.
    1. Mani P, Uno K, St John J, Kupfer S, Perez A, Tuzcu EM, et al. Favorable impact on LDL particle size in response to treatment with pioglitazone is associated with less progression of coronary atherosclerosis in patients with type 2 diabetes. J Am Coll Cardiol. 2015;66(3):328–9. doi: 10.1016/j.jacc.2015.05.023.
    1. Tsujita K, Sugiyama S, Sumida H, Shimomura H, Yamashita T, Yamanaga K, et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J Am Coll Cardiol. 2015;66(5):495–507. doi: 10.1016/j.jacc.2015.05.065.
    1. Hirohata A, Yamamoto K, Miyoshi T, Hatanaka K, Hirohata S, Yamawaki H, et al. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J Am Coll Cardiol. 2010;55(10):976–82. doi: 10.1016/j.jacc.2009.09.062.
    1. Alexopoulos N, Melek BH, Arepalli CD, Hartlage GR, Chen Z, Kim S, et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (beyond endorsed lipid lowering with EBT scanning) J Am Coll Cardiol. 2013;61(19):1956–61. doi: 10.1016/j.jacc.2012.12.051.
    1. Expert Panel of 2014 China Cholesterol Education Program Experts Recommendations for Management of Dyslipidemia, Working Group on Blood Lipid and Atherosclerosis of Editorial Board of Chinese Journal of Cardiology, Epidemiology Group of Chinese Society of Cardiology, Expert Panel of 2014 China Cholesterol Education Program Experts Recommendations for Management of Dyslipidemia, Working Group on Blood Lipid and Atherosclerosis of Editorial Board of Chinese Journal of Cardiology, Epidemiology Group of Chinese Society of Cardiology. 2014 China cholesterol education program experts recommendations on management of dyslipidemia. Zhonghua Xin Xue Guan Bing Za Zhi. 2014; 42(8):633–6.
    1. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. doi: 10.1016/j.jacc.2013.11.002.
    1. Liao JK. Safety and efficacy of statins in Asians. Am J Cardiol. 2007;99(3):410–4. doi: 10.1016/j.amjcard.2006.08.051.
    1. Poolsup N, Li Wan Po A, Knight TL. Pharmacogenetics and psychopharmacotherapy. J Clin Pharm Ther. 2000;25(3):197–220. doi: 10.1046/j.1365-2710.2000.00281.x.
    1. Wang A, Yu BN, Luo CH, Tan ZR, Zhou G, Wang LS, et al. Ile118Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur J Clin Pharmacol. 2005;60(12):843–8. doi: 10.1007/s00228-004-0848-7.
    1. HPS2-THRIVE Randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34(17):1279–91. doi: 10.1093/eurheartj/eht055.
    1. Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol (1985) 2009;106(1):5–11. doi: 10.1152/japplphysiol.90756.2008.
    1. Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring). 2008;16(7):1693–7. doi: 10.1038/oby.2008.251.
    1. Willens HJ, Byers P, Chirinos JA, Labrador E, Hare JM, de Marchena E. Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography. Am J Cardiol. 2007;99(9):1242–5. doi: 10.1016/j.amjcard.2006.12.042.
    1. Grosso AF, de Oliveira SF, Higuchi Mde L, Favarato D, Dallan LA, da Luz PL. Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome. Diabetol Metab Syndr. 2014;6(1):47. doi: 10.1186/1758-5996-6-47.
    1. Miyoshi T, Hirohata A, Usui S, Yamamoto K, Murakami T, Komatsubara I, et al. Olmesartan reduces inflammatory biomarkers in patients with stable coronary artery disease undergoing percutaneous coronary intervention: results from the OLIVUS trial. Heart Vessels. 2014;29(2):178–85. doi: 10.1007/s00380-013-0343-0.
    1. Mason RP. Optimal therapeutic strategy for treating patients with hypertension and atherosclerosis: focus on olmesartan medoxomil. Vasc Health Risk Manag. 2011;7:405–16. doi: 10.2147/VHRM.S20737.
    1. Ferrario C. Effect of angiotensin receptor blockade on endothelial function: focus on olmesartan medoxomil. Vasc Health Risk Manag. 2009;5(1):301–14. doi: 10.2147/VHRM.S3141.
    1. Fliser D, Buchholz K, Haller H. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation. 2004;110(9):1103–7. doi: 10.1161/01.CIR.0000140265.21608.8E.
    1. Maeda A, Tamura K, Wakui H, Ohsawa M, Azushima K, Uneda K, et al. Effects of the angiotensin receptor blocker olmesartan on adipocyte hypertrophy and function in mice with metabolic disorders. BioMed Res Int. 2014;2014:946492. doi: 10.1155/2014/946492.
    1. Boogers MJ, Schuijf JD, Kitslaar PH, van Werkhoven JM, de Graaf FR, Boersma E, et al. Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. JACC Cardiovasc Imaging. 2010;3(7):699–709. doi: 10.1016/j.jcmg.2010.01.010.
    1. Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158(1):26–32. doi: 10.1016/j.ijcard.2010.12.085.
    1. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51(4 Suppl):5–40. doi: 10.1161/01.CIR.51.4.5.
    1. Zheng JL, Lu L, Hu J, Zhang RY, Zhang Q, Chen QJ, et al. Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis. 2010;210(2):590–5. doi: 10.1016/j.atherosclerosis.2009.12.016.
    1. Han Y, Jing J, Tu S, Tian F, Xue H, Chen W, et al. ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. Int J Cardiovasc Imaging. 2014;30(2):253–61. doi: 10.1007/s10554-013-0354-z.
    1. Bourantas CV, Garcia-Garcia HM, Farooq V, Maehara A, Xu K, Genereux P, et al. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study. JACC Cardiovasc Imaging. 2013;6(12):1263–72. doi: 10.1016/j.jcmg.2013.04.015.
    1. Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, et al. Coronary atheroma volume and cardiovascular events during maximally intensive statin therapy. Eur Heart J. 2013;34(41):3182–90. doi: 10.1093/eurheartj/eht260.
    1. Puri R, Nissen SE, Libby P, Shao M, Ballantyne CM, Barter PJ, et al. C-reactive protein, but not low-density lipoprotein cholesterol levels, associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy. Circulation. 2013;128(22):2395–403. doi: 10.1161/CIRCULATIONAHA.113.004243.
    1. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–87. doi: 10.1056/NEJMoa1110874.
    1. Christoph M, Herold J, Berg-Holldack A, Rauwolf T, Ziemssen T, Schmeisser A, et al. Effects of the PPARγ agonist pioglitazone on coronary atherosclerotic plaque composition and plaque progression in non-diabetic patients: a double-center, randomized controlled VH-IVUS pilot-trial. Heart Vessels. 2015;30(3):286–95. doi: 10.1007/s00380-014-0480-0.
    1. Clementi F, Di Luozzo M, Mango R, Luciani G, Trivisonno A, Pizzuto F, et al. Regression and shift in composition of coronary atherosclerotic plaques by pioglitazone: insight from an intravascular ultrasound analysis. J Cardiovasc Med (Hagerstown) 2009;10(3):231–7. doi: 10.2459/JCM.0b013e3283212eb6.

Source: PubMed

3
購読する