Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6

José E Belizário, Cibely C Fontes-Oliveira, Janaina Padua Borges, Janete Akemi Kashiabara, Edouard Vannier, José E Belizário, Cibely C Fontes-Oliveira, Janaina Padua Borges, Janete Akemi Kashiabara, Edouard Vannier

Abstract

Adult skeletal tissue is composed of heterogeneous population of cells that constantly self-renew by means of a controlled process of activation and proliferation of tissue-resident stem cells named satellite cells. Many growth factors, cytokines and myokines produced by skeletal muscle cells play critical roles in local regulation of the inflammatory process and skeletal muscle regeneration during different pathological conditions. IL-6 is a pleiotropic cytokine released in large amount during infection, autoimmunity and cancer. Low levels of IL-6 can promote activation of satellite cells and myotube regeneration while chronically elevated production promote skeletal muscle wasting. These distinct effects may be explained by a crosstalk of the IL-6/IL-6 receptor and gp130 trans-signaling pathway that oppose to regenerative and anti-inflammatory of the classical IL-6 receptor signaling pathway. Here we discuss on potential therapeutic strategies using monoclonal antibodies to IL-6R for the treatment of skeletal muscle wasting and cachexia. We also highlight on the IL-6/JAK/STAT and FGF/p38αβ MAPK signaling pathways in satellite cell activation and the use of protein kinase inhibitors for tailoring and optimizing satellite cell proliferation during the skeletal muscle renewal. Future investigations on the roles of the IL-6 classical and trans-signaling pathways in both immune and non-immune cells in skeletal muscle tissue will provide new basis for therapeutic approaches to reverse atrophy and degeneration of skeletal muscles in cancer and inflammatory diseases.

Keywords: Anti-IL-6 receptor monoclonal antibodies; Cancer cachexia; Exercise; IL-6; IL-6/IL-6R/gp130 signaling pathway; Jak/STAT signaling; Satellite cells; Skeletal muscle.

Figures

Fig. 1
Fig. 1
Immunohistochemical identification of satellite cells and myonuclei in human vastus lateralis muscle. Satellite cells are distinguished using co-staining for Pax7, laminin and DNA. Panels are images of a representative cross-section of skeletal muscle tissue stained for: Pax7 (a), myonuclei with Hoescht 33342 (b), laminin (c) and the merge image (d). Adapted from Brooks et al.
Fig. 2
Fig. 2
IL-6 classical and trans-signaling pathways. a IL-6 binds to cells that express both the membrane bound IL-6R gp130 and trigger the activation of the JAK/STAT signaling pathway. This type of signaling is called classical signaling. b In cells that express only gp130 but not IL-6R, IL-6 binds to soluble IL-6R (sIL-6R) and the complex in turn bind to gp130 to trigger the activation of intracellular signaling. This type of signaling is called trans-signaling. The sIL-6R is released by proteolytic cleavage of the IL-6R membrane bound precursor by the metalloproteases ADAM10 and 17. A natural form of gp130 is able to bind to the sIL-6R bound to IL-6 with comparable affinity and mediates inhibition of IL-6 trans-signaling
Fig. 3
Fig. 3
Skeletal muscle morphological alterations in cancer cachexia revealed by confocal (ad) and transmitted electron (e, f) microscopic examination of a cross section of soleus muscle from mouse bearing B16 melanoma and severe cachexia as compared to normal soleus obtained from control C57BL/6 mouse. Myocyte apoptotic cell death is characterized by DNA fragmentation and deposition of chromatin masses around nuclear membrane. In a, a representative image illustrating the normal flattened nuclei located in parallel with skeletal muscle fibers in the periphery of normal myotube. In b, the image shows irregular nucleus with visible clumping of nuclear chromatin confirming cell death by apoptosis. In c, the micrograph shows the myosin banding displaying regular cross-striations and intense fluorescence. In d, illustrates myosin appearance in cachectic skeletal muscle fiber. The weak fluorescence intensity is reflecting breakdown of myofibril and tissue architecture. Nuclei were stained with propidium iodide and myosin pattern was revealed with monoclonal antibody to fast myosin skeletal heavy chain (lower panel). In e, the electron micrograph shows a nucleus with normal morphology (upper side) and a typical apoptotic nucleus with condensed chromatin fragments at its periphery (lower side). In f, the micrograph shows a portion of sarcolemma surrounded by mitochondria and vacuoles containing apoptotic bodies (autophagosome). The ubiquitin–proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle degradation along skeletal muscle wasting
Fig. 4
Fig. 4
Mediators and signaling pathways involved in the control of myotube degradation and repairing via satellite cell activation. a Schematic representation of muscle growth and muscle wasting pathways generated in the studies of gene expression patterns in skeletal muscle from cancer cachexia mice models. Genes with growth-promoting activity in skeletal muscle are shown in orange and genes involved muscle wasting in green and genes involved in satellite cell activation in blue. This set of genes is significantly up-regulated during food deprivation, diabetes, uremia, and cancer cachexia and target genes under the control of FoxO transcription factors in skeletal muscle wasting. b Quiescent satellite cells (white) activated by myokines and injury initiate symmetric and asymmetric divisions to produce activated satellite cells (green) and self-renewing satellite cell and myogenic stem cells (blue). After many rounds of division their progeny differentiate into myocytes and then myotubes. A different set of the transcription factors and membrane protein are expressed along each differentiation state of satellite cells. Some specific biomarkers are indicated in the panels inside the figure. Adapted from Bonetto et al. (2014) and Yin et al. (2013). IGF insulin-like growth factor; INSR, insulin receptor substrate 1; IGFR, insulin-like growth factor receptor; PI3K, phosphoinositide 3-kinase; GSK3, Glycogen synthase kinase 3; 4E-BP1, Eukaryotic translation initiation factor 4E binding protein 1; mTOR, mammalian target of rapamycin; p70S6K, serine/threonine kinase; Akt, Protein kinase B; FoxO, Forkhead box O transcription factors; IL-6, interleukin-6; LIF, leukemia inhibitory factor, TNF, tumor necrosis factor, IL-1, interleukin-1, TRAF, TNF receptor associated factor; NF-κB, factor nuclear kappa B; IKK, inhibitor of nuclear factor kappa-B kinase; MAPK, mitogen-activated protein kinase; JAK, janus kinase; STAT, Signal Transducer and Activator of Transcription; ERK, extracellular signal regulated kinase; ALK, activin receptor-like kinase, ACVR2B, activin receptor, SMAD, transcription factor; Atrogin, E3 ubiquitin ligases Muscle Atrophy Fbox (MAFbx); MURF1, Muscle Ring Finger 1, MHC, myosin heavy chain; MCK, muscle creatine kinase; SOCS, Suppressor of cytokine signaling; BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
Fig. 5
Fig. 5
Pharmacological approaches in pre-clinical and clinical trials for treating inflammatory diseases and muscle wasting in cancer cachexia. a Chemical and biological inhibitors of IL-6, b sIL-6R, c IL-6R, and d small molecule inhibitors of protein kinases, in the IL-6R downstream signaling pathways. The binding of IL-6 to IL-6R is inhibited by monoclonal antibodies sirukumab, clazakizumab and olokizumab. The interaction of IL-6R with gp130 is blocked by the monoclonal antibodies tocilizumab, sarilumab, ALD518 and siltuximab. FE999301 is a Fc-linked sgp130 recombinant protein that block the interaction of the complex formed by sgp130, soluble IL-6 and IL-6R that act as antagonist of interleukin-6 receptor trans-signaling responses. In box d are examples of small molecule inhibitors of p38α/β protein kinase activity with most highly selectivity and in box e are examples of phosphopeptide-based prodrugs targeting the SH2 domain of STAT3. SHIP1, SOCS and PIAS are natural negative regulators of JAK/STAT signaling pathways. Abbreviations: PIAS, the protein inhibitors of activated STATs, SOCS, Suppressor of Cytokine Signaling, NF-κB, factor nuclear kappa B, C/EBPβ, Enhancer Binding Protein Beta, AP-1, Activator Protein-1, ISRE, the IFN-stimulatory element, GAS, the IFN-γ-activation site, and TFs, transcription factors

References

    1. Ando K, Takahashi F, et al. Tocilizumab, a proposed therapy for the cachexia of Interleukin-6-expressing lung cancer. PLoS One. 2014;9(7):e102436. doi: 10.1371/journal.pone.0102436.
    1. Ardies CM. Exercise, cachexia, and cancer therapy: a molecular rationale. Nutr Cancer. 2002;42(2):143–157. doi: 10.1207/S15327914NC422_1.
    1. Argiles JM, Busquets S, et al. The pivotal role of cytokines in muscle wasting during cancer. Int J Biochem Cell Biol. 2005;37(10):2036–2046. doi: 10.1016/j.biocel.2005.03.014.
    1. Argiles JM, Anker SD, et al. Consensus on cachexia definitions. J Am Med Dir Assoc. 2010;11(4):229–230. doi: 10.1016/j.jamda.2010.02.004.
    1. Argiles JM, Busquets S, et al. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–762. doi: 10.1038/nrc3829.
    1. Argiles JM, Fontes-Oliveira CC, et al. Cachexia: a problem of energetic inefficiency. J Cachexia Sarcopenia Muscle. 2014;5(4):279–286. doi: 10.1007/s13539-014-0154-x.
    1. Attaix D, Bechet D. FoxO3 controls dangerous proteolytic liaisons. Cell Metab. 2005;6(6):425–427. doi: 10.1016/j.cmet.2007.11.005.
    1. Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle ring finger-1 null mice: response to synthetic glucocorticoid. J Physiol. 2011;589:4759–4776. doi: 10.1113/jphysiol.2011.212845.
    1. Baltgalvis KA, Berger FG, et al. Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R393–R401. doi: 10.1152/ajpregu.00716.2007.
    1. Baltgalvis KA, Berger FG, et al. Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc Min/+ mouse. Pflugers Arch. 2009;457(5):989–1001. doi: 10.1007/s00424-008-0574-6.
    1. Baracos VE, Mackenzie ML. Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr. 2006;136(1 Suppl):237S–242S.
    1. Baracos VE, DeVivo C, Hoyle DH, Goldberg AL. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol. 1995;268(5 Pt 1):E996–E1006.
    1. Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. 2006;75:19–37. doi: 10.1146/annurev.biochem.75.103004.142622.
    1. Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol. 2005;37(10):2098–2114. doi: 10.1016/j.biocel.2005.02.029.
    1. Belizario JE, Katz M, et al. Bioactivity of skeletal muscle proteolysis-inducing factors in the plasma proteins from cancer patients with weight loss. Br J Cancer. 1991;63(5):705–710. doi: 10.1038/bjc.1991.159.
    1. Belizário JE, Lorite MJ, Tisdale MJ. Cleavage of caspases-1, -3, -6, -8 and -9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia. Br J Cancer. 2001;84(8):1135–1140. doi: 10.1054/bjoc.2001.1700.
    1. Belizario JE, Alves J, et al. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. Curr Protein Pept Sci. 2008;9(3):210–220. doi: 10.2174/138920308784534023.
    1. Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2014;11(2):86–97. doi: 10.1038/nrrheum.2014.193.
    1. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2). doi:10.1101/cshperspect.a008342
    1. Bernet JD, Doles JD, et al. P38 MAPK signaling underlies a cell autonomous loss of stem cell self-renewal in aged skeletal muscle. Nat Med. 2014;20(3):265–271. doi: 10.1038/nm.3465.
    1. Blau HM, Cosgrove BD, Andrew TV. The central role of muscle stem cells in regenerative failure with aging. Nature Med. 2015;21(8):854–865. doi: 10.1038/nm.3918.
    1. Bodine SC, Stitt TN, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–1019. doi: 10.1038/ncb1101-1014.
    1. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25–39. doi: 10.1242/dmm.010389.
    1. Bonetto A, Aydogdu T, et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 2012;303(3):E410–E421. doi: 10.1152/ajpendo.00039.2012.
    1. Boonen KJ, Post MJ. The muscle stem cell niche: regulation of satellite cells during regeneration. Tissue Eng Part B Rev. 2008;14(4):419–431. doi: 10.1089/ten.teb.2008.0045.
    1. Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle. 2016;6:1. doi: 10.1186/s13395-016-0072-z.
    1. Brien P, Pugazhendhi D, et al. P38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair. Stem Cells. 2013;31:1597–1610. doi: 10.1002/stem.1399.
    1. Brooks NE, Cadena SM, Vannier E, Cloutier G, Carambula S, Myburgh KH, et al. Effects of resistance exercise combined with essential amino acid supplementation and energy deficit on markers of skeletal muscle atrophy and regeneration during bed rest and active recovery. Muscle Nerve. 2010;42(6):927–935. doi: 10.1002/mus.21780.
    1. Bryson-Richardson RJ, Currie PD. The genetics of vertebrate myogenesis. Nat Rev Genet. 2008;9(8):632–646. doi: 10.1038/nrg2369.
    1. Cannon JG, Evans WJ, Hughes VA, Meredith CN, Dinarello CA. Physiological mechanisms contributing to increased interleukin-1 secretion. J Appl Physiol. 1986;61(5):1869–1874.
    1. Cantini M, Massimino ML, et al. Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun. 1995;216(1):49–53. doi: 10.1006/bbrc.1995.2590.
    1. Carlson ME, Conboy IM. Loss of stem cell regenerative capacity within aged niches. Aging Cell. 2007;6(3):371–382. doi: 10.1111/j.1474-9726.2007.00286.x.
    1. Centner T, Yano J, et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol. 2001;306(4):717–726. doi: 10.1006/jmbi.2001.4448.
    1. Chalaris A, Garbers C, et al. The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur J Cell Biol. 2011;90(6–7):484–494. doi: 10.1016/j.ejcb.2010.10.007.
    1. Chang NC, Rudnicki MA. Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol. 2014;107:161–181. doi: 10.1016/B978-0-12-416022-4.00006-8.
    1. Ciechanover A. The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem Soc Trans. 2003;31(2):474–481. doi: 10.1042/bst0310474.
    1. Cohen S, Brault JJ, et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009;185(6):1083–1095. doi: 10.1083/jcb.200901052.
    1. Cornelison DD. Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem. 2008;105(3):663–669. doi: 10.1002/jcb.21892.
    1. Costelli P, Reffo P, Penna F, Autelli R, Bonelli G, Baccino FM (2005) Ca(2+)-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol 37(10):2134–2146
    1. Cuenda A, Rousseau A. p38 MAP-kinases pathway regulation, function and role in human diseases. Bioch Biophy Acta. 2007;1773:1358–1375. doi: 10.1016/j.bbamcr.2007.03.010.
    1. DaCosta Byfield S, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65(3):744–752. doi: 10.1124/mol.65.3.744.
    1. Do DV, Ueda J, et al. A genetic and developmental pathway from STAT3 to the OCT4- NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev. 2014;27:1378–1390. doi: 10.1101/gad.221176.113.
    1. Du J, Wang X, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest. 2004;113:115–123. doi: 10.1172/JCI18330.
    1. Duprez L, Wirawan L, et al. Major cell death pathways at a glance. Microbes Infect. 2009;11:1050–1062. doi: 10.1016/j.micinf.2009.08.013.
    1. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell. 2013;17:162–184.
    1. Elia D, Madhala D, et al. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta. 2007;1773(9):1438–1446. doi: 10.1016/j.bbamcr.2007.06.006.
    1. Evans WJ, Morley JE, et al. Cachexia: a new definition. Clin Nutr. 2008;27(6):793–799. doi: 10.1016/j.clnu.2008.06.013.
    1. Fasnacht N, Muller W. Conditional gp130 deficient mouse mutants. Semin Cell Dev Biol. 2008;19(4):379–384. doi: 10.1016/j.semcdb.2008.07.001.
    1. Fearon KC. Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer. 2008;44(8):1124–1132. doi: 10.1016/j.ejca.2008.02.033.
    1. Fearon K, Strasser F, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–495. doi: 10.1016/S1470-2045(10)70218-7.
    1. Fearon KC, Glass DJ, et al. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–166. doi: 10.1016/j.cmet.2012.06.011.
    1. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335–1347. doi: 10.1096/fj.01-0876rev.
    1. Fong Y, Moldawer LL, et al. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol. 1989;256(3 Pt 2):R659–R665.
    1. Fujita J, Tsujinaka T, et al. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer. 1996;68(5):637–643. doi: 10.1002/(SICI)1097-0215(19961127)68:5<637::AID-IJC14>;2-Z.
    1. Gayraud-Morel B, Chretien F, et al. A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol. 2007;312(1):13–28. doi: 10.1016/j.ydbio.2007.08.059.
    1. Glass DJ. Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care. 2010;13:225–229. doi: 10.1097/MCO.0b013e32833862df.
    1. Glass DJ. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol. 2010;346:267–278.
    1. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426(6968):895–899. doi: 10.1038/nature02263.
    1. Gomes MD, Lecker SH, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98(25):14440–14445. doi: 10.1073/pnas.251541198.
    1. Gopinath SD, Rando TA. Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell. 2008;7(4):590–598. doi: 10.1111/j.1474-9726.2008.00399.x.
    1. Graf D, Haselow K, et al. Caspase-mediated cleavage of the signal-transducing IL-6 receptor subunit gp130. Arch Biochem Biophys. 2008;477(2):330–338. doi: 10.1016/j.abb.2008.06.009.
    1. Haddad F, Zaldivar F, et al. IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985) 2005;98(3):911–917. doi: 10.1152/japplphysiol.01026.2004.
    1. Halevy O, Hodik V, et al. The effects of growth hormone on avian skeletal muscle satellite cell proliferation and differentiation. Gen Comp Endocrinol. 1996;101(1):43–52. doi: 10.1006/gcen.1996.0006.
    1. Hawley JA, Hargreaves M, et al. Integrative biology of exercise. Cell. 2014;159(4):738–749. doi: 10.1016/j.cell.2014.10.029.
    1. Heinrich PC, Behrmann I, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374(Pt 1):1–20. doi: 10.1042/bj20030407.
    1. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19:2548–2556. doi: 10.1038/sj.onc.1203551.
    1. Holmer R, Goumas FA, et al. Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int. 2014;13(4):371–380. doi: 10.1016/S1499-3872(14)60259-9.
    1. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16:448–457. doi: 10.1038/ni.3153.
    1. Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62(1):65–74. doi: 10.1124/mol.62.1.65.
    1. Inui A. Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res. 1999;59(18):4493–4501.
    1. Jablons DM, McIntosh JK, et al. Induction of interferon-beta 2/interleukin-6 (IL-6) by cytokine administration and detection of circulating interleukin-6 in the tumor-bearing state. Ann N Y Acad Sci. 1989;557:157–160. doi: 10.1111/j.1749-6632.1989.tb24008.x.
    1. Judge SM, Wu C-L, et al. Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 2014;14:997. doi: 10.1186/1471-2407-14-997.
    1. Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. Biochim Biophys Acta. 2002;1592(3):323–343. doi: 10.1016/S0167-4889(02)00325-7.
    1. Kandarian SC, Jackman RW. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve. 2006;33(2):155–165. doi: 10.1002/mus.20442.
    1. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Muñoz-Cánoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 491497
    1. Koeberle SC, Romir J, Fischer S, Koeberle A, Schattel V, Albrecht W, Grütter C, et al. Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat Chem Biol. 2012;8:141–143. doi: 10.1038/nchembio.761.
    1. Kollias HD, McDermott JC. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J Appl Physiol. 2008;104(3):579–587. doi: 10.1152/japplphysiol.01091.2007.
    1. Kusano KF, Pola R, et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med. 2005;11(11):1197–1204. doi: 10.1038/nm1313.
    1. Kwak KS, Zhou X, et al. Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3alpha-II during cancer cachexia. Cancer Res. 2004;64(22):8193–8198. doi: 10.1158/0008-5472.CAN-04-2102.
    1. Lach-Trifilieff E, Minettia GC, et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol. 2014;34(4):606–618. doi: 10.1128/MCB.01307-13.
    1. Lahiri T, Laporte JD, et al. Interleukin-6 family cytokines: signaling and effects in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2001;280(6):L1225–L1232.
    1. Laine A, Iyengar P, et al. The role of inflammatory pathways in cancer-associated cachexia and radiation resistance. Mol Cancer Res. 2013;11(9):967–972. doi: 10.1158/1541-7786.MCR-13-0189.
    1. Lecker SH, Jagoe RT, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18(1):39–51. doi: 10.1096/fj.03-0610com.
    1. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006;17(7):1807–1819. doi: 10.1681/ASN.2006010083.
    1. Lee SJ, Lee Y-L, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER. Regulation of muscle mass by follistatin and activins. Mol Endocrinol. 2010;24:1998–2008. doi: 10.1210/me.2010-0127.
    1. Lee S-J, Huynha TV, et al. Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proc Natl Acad Sci USA. 2012;109(35):E2353–E2360. doi: 10.1073/pnas.1206410109.
    1. Lokireddy S, Wijesoma IW, et al. Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem J. 2012;446(1):23–36. doi: 10.1042/BJ20112024.
    1. Luz MA, Marques MJ, et al. Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res. 2002;35(6):691–695. doi: 10.1590/S0100-879X2002000600009.
    1. Mammucari C, Milan G. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6(6):458–471. doi: 10.1016/j.cmet.2007.11.001.
    1. Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14(1):10–22. doi: 10.1038/sj.cdd.4402038.
    1. Matsushita K, Iwanaga S, et al. Interleukin-6/soluble interleukin-6 receptor complex reduces infarct size via inhibiting myocardial apoptosis. Lab Invest. 2005;85(10):1210–1223. doi: 10.1038/labinvest.3700322.
    1. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90. doi: 10.1038/387083a0.
    1. Megeney LA, Kablar B, et al. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 1996;10(10):1173–1183. doi: 10.1101/gad.10.10.1173.
    1. Motorashi N, Assakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol. 2014;2:1.
    1. Mullberg J, Geib T, et al. IL-6 receptor independent stimulation of human gp130 by viral IL-6. J Immunol. 2000;164(9):4672–4677. doi: 10.4049/jimmunol.164.9.4672.
    1. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280(17):4131–4148. doi: 10.1111/febs.12338.
    1. Muscaritoli M, Anker SD, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics. Clin Nutr. 2010;29(2):154–159. doi: 10.1016/j.clnu.2009.12.004.
    1. Narsale AA, Carson JA. Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care. 2014;8(4):321–327. doi: 10.1097/SPC.0000000000000091.
    1. Oliff A, Defeo-Jones D, et al. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell. 1987;50(4):555–563. doi: 10.1016/0092-8674(87)90028-6.
    1. Pal M, Febbraio MA, et al. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol. 2014;92(4):331–339. doi: 10.1038/icb.2014.16.
    1. Parker MH, Seale P, et al. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet. 2003;4(7):497–507. doi: 10.1038/nrg1109.
    1. Pedersen BK. Exercise and cytokines. Immunol Cell Biol. 2000;78:532–535. doi: 10.1111/j.1440-1711.2000.t01-11-.x.
    1. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214(Pt 2):337–346. doi: 10.1242/jeb.048074.
    1. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–465. doi: 10.1038/nrendo.2012.49.
    1. Pedersen BK, Steensberg A, et al. Muscle-derived interleukin-6: possible biological effects. J Physiol. 2001;536(Pt 2):329–337. doi: 10.1111/j.1469-7793.2001.0329c.xd.
    1. Pedersen BK, Steensberg A, et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc. 2004;63(2):263–267. doi: 10.1079/PNS2004338.
    1. Pelosi M, De Rossi M, et al. IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity. Biomed Res Int. 2014;2014:206026. doi: 10.1155/2014/206026.
    1. Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol. 2004;5(3):177–187. doi: 10.1038/nrm1336.
    1. Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem. 2009;284(33):21777–21781. doi: 10.1074/jbc.R800084200.
    1. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012;139:2845–2856. doi: 10.1242/dev.069088.
    1. Riobo NA, Lu K, et al. Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA. 2006;103(12):4505–4510. doi: 10.1073/pnas.0504337103.
    1. Rubin H. Cancer cachexia: its correlations and causes. Proc Natl Acad Sci USA. 2003;100(9):5384–5389. doi: 10.1073/pnas.0931260100.
    1. Russell AP. Molecular regulation of skeletal muscle mass. Clin Exp Pharmacol Physiol. 2010;37(3):378–384. doi: 10.1111/j.1440-1681.2009.05265.x.
    1. Sacheck JM, Cannon JG, Hamada K, Vannier E, Blumberg JB, Roubenoff R. Age-related loss of associations between acute exercise-induced IL-6 and oxidative stress. Am J Physiol Endocrinol. 2008;291(2):E340–E349. doi: 10.1152/ajpendo.00052.2005.
    1. Sandri M. Apoptotic signaling in skeletal muscle fibers during atrophy. Curr Opin Clin Nutr Metab Care. 2002;5:249–253. doi: 10.1097/00075197-200205000-00003.
    1. Sandri M. FOXOphagy path to inducing stress resistance and cell survival. Nat Cell Biol. 2012;8:786–788. doi: 10.1038/ncb2550.
    1. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45(10):2121–2129. doi: 10.1016/j.biocel.2013.04.023.
    1. Sandri M, Sandri C, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412. doi: 10.1016/S0092-8674(04)00400-3.
    1. Sangiuliano B, Pérez NM, et al. Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediators Inflamm. 2014;2014:821043. doi: 10.1155/2014/821043.
    1. Savage KJ, McPherron AC. Endurance exercise training in myostatin null mice. Muscle Nerve. 2010;42(3):355–362. doi: 10.1002/mus.21688.
    1. Scheller J, Ohnesorge N, et al. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol. 2006;63(5):321–329. doi: 10.1111/j.1365-3083.2006.01750.x.
    1. Schellera J, Chalaris A, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta Mol Cell Res. 2011;1813(5):878–888. doi: 10.1016/j.bbamcr.2011.01.034.
    1. Schiaffino S, Dyar KA, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294–4314. doi: 10.1111/febs.12253.
    1. Seale P, Rudnicki MA. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol. 2000;218(2):115–124. doi: 10.1006/dbio.1999.9565.
    1. Seale P, Sabourin LA, et al. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102(6):777–786. doi: 10.1016/S0092-8674(00)00066-0.
    1. Seelaender M, Batista M, Jr, et al. Inflammation in cancer cachexia: to resolve or not to resolve (is that the question?) Clin Nutr. 2012;31(4):562–566. doi: 10.1016/j.clnu.2012.01.011.
    1. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44
    1. Shaw S, Bourne T, Meier C, Carrington B, Gelinas R, Henry A, et al. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs. 2014;6(3):773–781. doi: 10.4161/mabs.28612.
    1. Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006;20(13):1692–1708. doi: 10.1101/gad.1419406.
    1. Shibata M, Nagata Y, Kimura T, Kanou H, Nezu T, Takekawa M, Fukuzawa M. Elevated serum concentration of interleukin-1 receptor antagonist (IL-1ra) is correlated to interleukin-6 and to hypoalbuminemia in cachectic patients with colorectal cancer. Intl J Clin Oncol. 2000;5(2):116–120. doi: 10.1007/s101470050101.
    1. Silva KAS, Dong J, Dong Y, Schor N, Tweardy DJ, Zhang L, Mitch WE. Inhibition of stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem. 2015;290(17):11177–11187. doi: 10.1074/jbc.M115.641514.
    1. Skiniotis G, Lupardus PJ, et al. Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex. Mol Cell. 2008;31(5):737–748. doi: 10.1016/j.molcel.2008.08.011.
    1. Steensberg A, Febbraio MA, et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol. 2001;537(Pt 2):633–639. doi: 10.1111/j.1469-7793.2001.00633.x.
    1. Straface G, Aprahamian T, et al. Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med. 2009;13(8B):2424–2435. doi: 10.1111/j.1582-4934.2008.00440.x.
    1. Takeda KK, Noguchi K, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA. 1997;94:3801–3804. doi: 10.1073/pnas.94.8.3801.
    1. Takeuchi J, Chen H, et al. Proteosome substrate degradation requires association plus extended peptide. EMBO J. 2007;26:123–131. doi: 10.1038/sj.emboj.7601476.
    1. Tan BH, Fearon KC. Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care. 2008;11(4):400–407. doi: 10.1097/MCO.0b013e328300ecc1.
    1. Tan BH, Deans DA, et al. Biomarkers for cancer cachexia: is there also a genetic component to cachexia? Support Care Cancer. 2008;16(3):229–234. doi: 10.1007/s00520-007-0367-z.
    1. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med. 2014;20(10):1182–1186. doi: 10.1038/nm.3656.
    1. Tisdale MJ. Tumor-host interactions. J Cell Biochem. 2004;93(5):871–877. doi: 10.1002/jcb.20246.
    1. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410. doi: 10.1152/physrev.00016.2008.
    1. Toth KG, McKay BR, et al. IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One. 2011;6:e17392. doi: 10.1371/journal.pone.0017392.
    1. Tsujinaka T, Ebisui C, et al. Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem Biophys Res Commun. 1995;207(1):168–174. doi: 10.1006/bbrc.1995.1168.
    1. Tsujinaka T, Fujita J, et al. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest. 1996;97(1):244–249. doi: 10.1172/JCI118398.
    1. van Hall G, Steensberg A, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88(7):3005–3010. doi: 10.1210/jc.2002-021687.
    1. Ventrucci G, de Mello MA et al (2002) Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats. BMC Cancer 2:7
    1. Wang XH, Mitch WE. Caspase-3 cleaves specific 19S proteasome subunits in skeletal muscle stimulating proteasome activity. Int J Biochem Cell Biol. 2010;45(10):2230–2238. doi: 10.1016/j.biocel.2013.06.027.
    1. Weigert C, Hennige AM, et al. Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem. 2006;281(11):7060–7067. doi: 10.1074/jbc.M509782200.
    1. Wolf J, Rose-John S, et al. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70(1):11–20. doi: 10.1016/j.cyto.2014.05.024.
    1. Yablonka-Reuveni Z, Day K, et al. Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci. 2008;86(14 Suppl):E207–E216.
    1. Yin H, Price F, et al. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67. doi: 10.1152/physrev.00043.2011.
    1. Zaki MH, Nemeth JA, et al. CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int J Cancer. 2004;111(4):592–595. doi: 10.1002/ijc.20270.
    1. Zammit PS, Partridge TA, et al. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006;54(11):1177–1191. doi: 10.1369/jhc.6R6995.2006.
    1. Zhang D, Zheng H, et al. Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer. BMC Cancer. 2007;7:45. doi: 10.1186/1471-2407-7-45.
    1. Zhao J, Brault JJ, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6(6):472–483. doi: 10.1016/j.cmet.2007.11.004.
    1. Zhou W, Jiang ZW, et al. Role of NF-kappaB and cytokine in experimental cancer cachexia. World J Gastroenterol. 2003;9(7):1567–1570. doi: 10.3748/wjg.v9.i7.1567.
    1. Zhou X, Wang JL, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142:531–543. doi: 10.1016/j.cell.2010.07.011.
    1. Zvonic S, Baugh JE, Jr, et al. Cross-talk among gp130 cytokines in adipocytes. J Biol Chem. 2005;280(40):33856–33863. doi: 10.1074/jbc.M508020200.

Source: PubMed

3
購読する