Tropism and pathogenicity of rickettsiae

Tsuneo Uchiyama, Tsuneo Uchiyama

Abstract

Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic, and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group (SFG) and typhus group (TG) rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism toward cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and non-pathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and non-pathogenic species of SFG rickettsiae (SFGR) in mammalian cells. The growth of non-pathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of non-pathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the non-pathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.

Keywords: Rickettsia; insect; pathogenicity; spotted fever group; tick; tropism; typhus group; vector.

Figures

Figure 1
Figure 1
Basic tropism of rickettsiae toward cultured cells. The growth of SFGR and TGR was monitored in cells derived from ticks, insects, and mammals. SFGR grew well in tick cells, while TGR grew well in insect cells. However, the growth of SFGR was restricted in insect cells and that of TGR was restricted in tick cells. Both groups of pathogenic rickettsiae grew well in mammalian cells. Both groups of rickettsiae were confirmed to be capable of adhering to all of the tested cells.
Figure 2
Figure 2
Growth kinetics of SFGR and TGR in insect, tick, and mammalian cells. Various cultured cells were infected with SFGR alone or TGR alone, and the yield of rickettsiae was monitored. Some of the infected cultures were superinfected with TG or SFGR, respectively, on day three of infection, and the growth of each Rickettsia species was monitored.
Figure 3
Figure 3
Scanning electron microscopy of cells infected with TGR and SFGR. (A) AeAl2 cells infected with R. typhi at 10 and 60 min after infection. (B) AeAl2 cells infected with R. japonica at 10 and 60 min after infection. Successful adherence to and invasion of AeAl2 insect cells was achieved by both TGR and SFGR soon after their inoculation. The yellow and red arrows indicate adherent and invading rickettsiae, respectively.
Figure 4
Figure 4
Model of the rickettsia-host cell interactions that occur during the course of infection. The first step in SFGR entry into host cells is the adhesion of rickettsiae to cells due to the binding of many rickettsial adhesins to host cell receptors, followed by the activation of intracellular signaling pathways that induce actin polymerization and membrane rearrangement, causing the attached rickettsiae to be engulfed. Just after clathrin and caveolin-2-dependent phagocytosis, rickettsiae escape from the phagosomes that engulfed them by secreting the phospholipases TlyC and Pld. In the case of SFGR, the surface molecules RicA and Sca2 recruit Arp2/3 to polymerize actin, resulting in the formation of an actin tail, which aids the movement of the bacteria. However, in the case of TGR, R. prowazekii does not have an actin tail, while R. typhi has a very short actin tail. SFGR invade the adjacent cells very early in the course of the infection. Rickettsiae grow within cells by binary fission. The VirB-related T4SS is essential for the intracellular survival of rickettsiae as it allows them to secrete effector molecules.
Figure 5
Figure 5
Growth kinetics of non-pathogenic and pathogenic SFGR in mammalian cells. The growth of non-pathogenic and pathogenic rickettsiae was monitored. Some of the cells that had been infected with non-pathogenic R. montanensis were superinfected with pathogenic R. japonica on day three of infection, and the growth of each Rickettsia was monitored. The growth of non-pathogenic SFGR was restricted in mammalian cells. The superinfection of the infected cells with pathogenic SFGR induced an elevated yield of the non-pathogenic SFGR and the growth of the pathogenic species.
Figure 6
Figure 6
Transmission electron microscopy of Vero cells infected with non-pathogenic and pathogenic SFGR. (A) Vero cells infected with R. montanensis alone was observed at 7 days after infection. An arrow marks a degenerating rickettsia in an autophagosome-like vacuole. (B)R. montanensis-infected cells were superinfected with R. japonica on day three of infection and observed at 7 days after the first infection. Many free rickettsiae around 1 μm in length surrounded by halos and those in the course of binary fission were seen in the cytoplasm. Bars, 1 μm.

References

    1. Anacker R. L., List R. H., Mann R. E., Hayes S. F., Thomas L. A. (1985). Characterization of monoclonal antibodies protecting mice against Rickettsia rickettsii. J. Infect. Dis. 151, 1052–106010.1093/infdis/151.6.1052
    1. Anacker R. L., Mcdonald G. A., List R. H., Mann R. E. (1987). Neutralizing activity of monoclonal antibodies to heat-sensitive and heat-resistant epitopes of Rickettsia rickettsii surface proteins. Infect. Immun. 55, 825–827
    1. Andersson S. G. E., Zomorodipour A., Andersson J. O., Sicheritz-Pontén T., Alsmark U. C. M., Podowski R. M., Näslund A. K., Eriksson S.-S., Winkler H. H., Kurland C. G. (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–14010.1038/24094
    1. Beati L., Meskini M., Thiers B., Raoult D. (1997). Rickettsia aeschlimannii sp. nov., a new spotted fever group Rickettsia associated with Hyalomma marginatum ticks. Int. J. Syst. Bacteriol. 47, 548–554
    1. Beati L., Peter O., Burgdorfer W., Aeschlima A., Raoult D. (1993). Confirmation that Rickettsia helvetica sp. nov. is a distinct species of the spotted fever group of Rickettsiae. Int. J. Syst. Bacteriol. 43, 521–52610.1099/00207713-43-4-839
    1. Beati L., Raoult D. (1993). Rickettsia massiliae sp. nov., a new spotted fever group Rickettsia. Int. J. Syst. Bacteriol. 43, 839–840
    1. Bechelli J. B., Rydkina E., Colonne P. M., Sahni S. K. (2009). Rickettsia rickettsii infection protects human microvascular endothelial cells against staurosporine-induced apoptosis by a cIAP2-independent mechanism. J. Infect. Dis. 119, 1389–1398
    1. Bell E. J., Kohls G. M., Stenner H. G., Lackman D. B. (1963). Nonpathogenic rickettsias related to the spotted fever group isolated from ticks, Dermacentor variabilis and Derrnacentor andersoni from Eastern Montana. J. Immunol. 90, 770–781
    1. Blanc G., Ogata H., Robert C., Audic S., Suhre K., Vestris G., Claverie J.-M., Raoult D. (2007). Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 3, e14 10.1371/journal.pgen.0030014
    1. Botelho-Nevers E., Raoult D. (2011). Host, pathogen and treatment -related prognostic factors in rickettsiosis. Eur. J. Clin. Microbiol. Infect. Dis. 30, 1139–115010.1007/s10096-011-1208-z
    1. Brumpt E. (1932). Longevité du virus de la fièvre boutonneuse (Rickettsia conorii, n. sp.) chez la tique Rhipicephalus sanguineus. C. R. Seances Soc. Biol. Fil. 110, 1119–1202
    1. Burgdorfer W., Hayes S. F., Mavros A. J. (1981). “Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii,” in Rickettsiae and Rickettsial Diseases, eds Burgdorfer W., Anacker R. L. (New York, NY: Academic Press; ), 585–594
    1. Cardwell M. M., Martinez J. J. (2009). The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77, 5272–528010.1128/IAI.00201-09
    1. Carl M., Dobson M. E., Ching W.-M., Dasch G. A. (1990). Characterization of the gene encoding the protective paracrystalline-surface layer protein of Rickettsia prowazekii: presence of a truncated identical homolog in Rickettsia typhi. Proc. Natl. Acad. Sci. U.S.A. 87, 8237–824110.1073/pnas.87.21.8237
    1. Chan F. K.-M., Shisler J., Bixby J. G., Felices M., Zheng L., Appel M., Orenstein J., Moss B., Lenardo M. J. (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–5162110.1074/jbc.C300138200
    1. Chan Y. G. Y., Cardwell M. M., Hermanas T. M., Uchiyama T., Martinez J. J. (2009). Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11, 629–64410.1111/j.1462-5822.2008.01279.x
    1. Cho Y. S., Challa S., Moquin D., Genga R., Ray T. D., Guildford M., Chan F. K.-M. (2009). Phosphorylation-driven assembly of RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–112310.1016/j.cell.2009.05.037
    1. Clark T. R., Ellison D. W., Kleba B., Hackstadt T. (2011). Complementation of Rickettsia rickettsii relA/spoT restores a nonlytic plaque phenotype. Infect. Immun. 79, 1631–163710.1128/IAI.00048-11
    1. Crocquet-Valdes P. A., Díaz-Montero C. M., Feng H. M., Li H., Barrett A. D. T., Walker D. H. (2001). Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine 20, 979–98810.1016/S0264-410X(01)00377-2
    1. Cullinane M., Gong L., Li X., Lazar-Adler N., Tra T., Wolvetang E., Prescott M., Boyce J. D., Devenish R. J., Adler B. (2008). Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4, 744–753
    1. Dignat-George F., Teysseire N., Mutin M., Bardin N., Lesaule G., Raoult D., Sampol J. (1997). Rickettsia conorii infection enhances vascular cell adhesion molecule-1 and intercellular adhesion molecule-1-dependent mononuclear cell adherence to endothelial cells. J. Infect. Dis. 175, 1142–1152
    1. Drancourt M., Allessi M. C., Levy P. Y., Juhan-Vague I., Raoult D. (1990). Selection of tissue-type plasminogen activator and plasminogen activator inhibitor by Rickettsia conroii and Rickettsia rickettsii-infected cultured endothelial cells. Infect. Immun. 58, 2459–2463
    1. Dyer R. E., Rumreich A., Badger L. F. (1931). Typhus fever: a virus of the typhus type derived from fleas collected from wild rats. Public Health Rep. 46, 334–33810.2307/4579944
    1. Felsheim R. F., Kurtti T. J., Munderloh U. G. (2009). Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS ONE 4, e8361 10.1371/journal.pone.0008361
    1. Fournier P.-E., Dumler J. S., Greub G., Zhang J., Wu Y., Raoult D. (2003). Gene sequence-based criteria for identification of new Rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. J. Clin. Microbiol. 41, 5456–546510.1128/JCM.41.12.5456-5465.2003
    1. Fournier P.-E., El Karkouri K., Leroy1 Q., Robert C., Giumelli B., Renesto P., Socolovschi C., Parola P., Audic S., Raoult D. (2009). Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10, 166 10.1186/1471-2164-10-166
    1. Fournier P.-E., Gouriet F., Brouqui P., Lucht F., Raoult D. (2005). Lymphangitis-associated rickettsiosis, a new rickettsiosis caused by Rickettsia sibirica mongolotimonae: seven new cases and review of the literature. Clin. Infect. Dis. 40, 1435–144410.1086/429625
    1. Fujita H. (2008). Cell culture system for isolation of disease agents: 15 years of experience in Ohara Research Laboratory. Annu. Rep. Ohara Hosp. 48, 21–42
    1. Gillespie J. J., Beier M. S., Rahman M. S., Ammerman N. C., Shallom J. M., Purkayastha A., Bruno S., Sobral S., Azad A. F. (2007). Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS ONE 2, e226 10.1371/journal.pone.0000266
    1. Gillespie J. J., Joardar V., Williams K. P., Driscoll T., Hostetler J. B., Nordberg E., Shukla M., Walenz B., Hill C. A., Nene V. M., Azad A. F., Sobral B. W., Caler E. (2012). A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J. Bacteriol. 194, 376–39410.1128/JB.06244-11
    1. Gilmore R. D., Jr., Cieplak W., Jr., Policastro P. F., Hackstadt T. (1991). The 120 kilodalton outer membrane protein (rOmp B) of Rickettsia rickettsii is encoded by an unusually long open reading frame: evidence for protein processing from a large precursor. Mol. Microbiol. 5, 2361–237010.1111/j.1365-2958.1991.tb02082.x
    1. Hahn M.-J., Kim K.-K., Kim I.-S., Chang W.-H. (1993). Cloning and sequence analysis of the gene encoding the crystalline surface layer protein of Rickettsia typhi. Gene 133, 129–13310.1016/0378-1119(93)90237-W
    1. Hanaoka N., Matsutani M., Kawabata H., Yamamoto S., Fujita H., Sakata A., Azuma Y., Ogawa M., Takano A., Watanabe H., Kishimoto T., Shirai M., Kurane I., Ando S. (2009). Diagnostic assay for Rickettsia japonica. Emerging Infect. Dis. 15, 1994–199710.3201/eid1512.090252
    1. He S., Wang L., Miao L., Wang T., Du F., Zhao L., Wang X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–111110.1016/j.cell.2009.04.028
    1. Higgins J. A., Radulovic S., Schriefer M. E., Azad A. (1996). Rickettsia felis: a new species of pathogenic Rickettsia isolated from cat fleas. J. Clin. Microbiol. 34, 671–674
    1. Holler N., Zaru R., Micheau O., Thome M., Attinger A., Valitutti S., Bodmer J.-L., Schneider P., Seed B., Tschopp J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–49510.1038/82732
    1. Huebner R. J., Jellison W. L., Pomerantiz C. (1946). Rickettsialpox, a newly recognized rickettsial disease; isolation of a Rickettsia apparently identical with the causative agent of rickettsial pox from Allodermanyssus sanguineus, a rodent mite. Public Health Rep. 61, 1677–168210.2307/4585913
    1. Joshi S. G., Francis C. W., Silverman D. J., Sahni S. K. (2004). NF-κB activation suppresses host cell apoptosis during Rickettsia rickettsii infection via regulatory effects on intracellular localization or levels of apoptogenic and anti-apoptotic proteins. FEMS Microbiol. Lett. 234, 333–34110.1111/j.1574-6968.2004.tb09552.x
    1. Kaplanski G. N., Teysseire N., Farnarier C., Kaplanski S., Lissitzky J. C., Durand J. M., Soubeyrand J., Dinarello C. A., Bongrand P. (1995). IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1α-dependent pathway. J. Clin. Invest. 96, 2839–284410.1172/JCI118354
    1. Kelly P. J., Beati L., Mason P. R., Mathewman L. A., Roux V., Raoult D. (1996). Rickettsia africae sp. nov., the etiological agent of African tick bite fever. Int. J. Syst. Bacteriol. 46, 611–614
    1. La M.-V., François P., Rovery C., Robineau S., Barbry P., Schrenzel J., Raoult D., Renesto P. (2007). Development of a method for recovering rickettsial RNA from infected cells to analyze gene expression profiling of obligate intracellular bacteria. J. Microbiol. Methods 71, 292–29710.1016/j.mimet.2007.09.017
    1. Laster S. M., Wood J. G., Gooding L. R. (1988). Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634
    1. Li H., Lenz B., Walker D. H. (1988). Protective monoclonal antibodies recognize heat-labile epitopes on surface proteins of spotted fever group rickettsiae. Infect. Immun. 56, 2587–2593
    1. Li H., Walker D. H. (1998). rOmp A is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb. Pathog. 24, 289–29810.1006/mpat.1997.0197
    1. Lin W. S., Cunneen T., Lee C. Y. (1994). Sequence analysis and molecular characterization of genes required for the biosynthesis of type I capsular polysaccharide in Staphylococcus aureus. J. Bacteriol. 176, 7005–7016
    1. Martinez J. J., Cossart P. (2004). Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell. Sci. 117, 5097–510610.1242/jcs.01382
    1. Martinez J. J., Seveau S., Veiga E., Matsuyama S., Cossart P. (2005). Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123, 1013–102310.1016/j.cell.2005.08.046
    1. McDonald G. A., Anacker R. L., Garjian K. (1987). Cloned gene of Rickettsia rickettsii surface antigen: candidate vaccine for Rocky Mountain spotted fever. Science 235, 83–8510.1126/science.3099387
    1. McDonald G. A., Anacker R. L., Mann R. E., Milch L. J. (1988). Protection of guinea pigs from experimental Rocky Mountain spotted fever with a cloned antigen of Rickettsia rickettsii. J. Infect. Dis. 158, 228–23110.1093/infdis/158.1.228
    1. Mediannikov O. Y., Sidelnikov Y., Ivanov L., Mokretsova E., Fournier P.-E., Tarasevich I., Raoult D. (2004). Acute tick-borne rickettsiosis caused by Rickettsia heilongjiangensis in Russian Far East. Emerging Infect. Dis. 10, 810–81710.3201/eid1005.030437
    1. Mitsuhashi J. (1981). A new continuous cell line from larvae of the mosquito Aedes albopictus (Diptera, Culicidae). Biomed. Res. 2, 599–606
    1. Mizuki E., Ohba M., Akao T., Yamashita S., Saitoh H., Park Y. S. (1999). Unique activity associated with noninsecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J. Appl. Microbiol. 86, 477–48610.1046/j.1365-2672.1999.00778.x
    1. Munderloh U. G., Hayes S. F., Cummings J., Kurtti T. J. (1998). Microscopy of spotted fever rickettsia movement through tick cells. Microsc. Microanal. 4, 115–121
    1. Niebylski M. L., Peacock M. G., Schwan T. G. (1999). Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl. Environ. Microbiol. 65, 773–778
    1. Niebylski M. L., Schrumpf M. E., Burgdorfer W., Fischer E. R., Gage K. L., Schwan T. G. (1997). Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in western Montana. Int. J. Syst. Bacteriol. 47, 446–452
    1. Noda H., Miyoshi T., Koizumi Y. (2002). In vitro cultivation of Wolbachia in insect and mammalian cell lines. In vitro Cell. Dev. Biol. Anim. 38, 423–42710.1290/1071-2690(2002)038<0423:IVCOWI>;2
    1. Ogata H., Audic S., Renesto-Audiffren P., Fournier P. E., Barbe V., Samson D., Roux V., Cossart P., Weissenbach J., Claverie J. M., Raoult D. (2001). Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293, 2093–209810.1126/science.1061471
    1. Ogata H., La Scola B., Audic S., Renesto P., Blanc G., Robert C., Fournier P.-E., Claverie J.-M., Raoult D. (2006). Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2, e76 10.1371/journal.pgen.0020076
    1. Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. (2005). Escape of intracellular Shigella from autophagy. Science 307, 727–73110.1126/science.1106036
    1. Paddock C. D., John W., Sumner J. W., Comer J. A., Zaki S. R., Goldsmith C. S., Goddard J., McLellan S. L., Tamminga C. L., Ohl C. A. (2004). Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin. Infect. Dis. 38, 805–81110.1086/381894
    1. Philip R. N., Casper E. A. (1981). Serotypes of spotted fever group rickettsiae isolated from Dermacentor andersoni (Stiles) ticks in western Montana. Am. J. Trop. Med. Hyg. 30, 230–238
    1. Philip R. N., Casper E. A., Anacker R. L., Cory J., Hayes S. F., Burgdorfer W., Yunker E. (1983). Rickettsia bellii sp. nov.: a tick-borne Rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. Int. J. Syst. Bacteriol 33, 94–106
    1. Plotz H., Smadel J. E., Bennet B. I. (1946). North Queensland tick typhus: studies of the aetiological agent and its relation to other rickettsial diseases. Med. J. Aust. 263–268
    1. Policastro P. F., Munderloh U. G., Fischer E. R., Hackstadt T. (1997). Rickettsia rickettsii growth and temperature-inducible protein expression in embryonic tick cell lines. J. Med. Microbiol. 46, 839–845
    1. Raoult D., Berbis P., Roux V., Xu W., Maurin M. (1997). A new tick-transmitted disease due to Rickettsia slovaca. Lancet 350, 112–11310.1016/S0140-6736(05)61813-2
    1. Renesto P., Samson L., Ogata H., Azza S., Fourquet P., Gorvel J.-P., Heinzen R. A., Raoult D. (2006). Identification of two putative rickettsial adhesins by proteomic analysis. Res. Microbiol. 158, 605–61210.1016/j.resmic.2006.02.002
    1. Riley S. P., Goh K. C., Hermanas T. M., Cardwell M. M., Chan Y. G. A., Martinez J. J. (2010). The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 78, 1895–190410.1128/IAI.01165-09
    1. Rovery C., Renesto P., Crapoulet N., Matsumoto K., Parola P., Ogata H., Raoult D. (2005). Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation. Res. Microbiol. 156, 211–21810.1016/j.resmic.2004.09.002
    1. Rydkina E., Sahni S. K., Santucci L. A., Turpin L. C., Baggs R. B., Silverman D. J. (2004). Selective modulation of antioxidant enzyme activities in host tissues during Rickettsia conorii infection. Microb. Pathog. 36, 293–30110.1016/j.micpath.2004.01.002
    1. Rydkina E., Silverman D. J., Sahni S. K. (2005). Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell. Microbiol. 7, 1519–153010.1111/j.1462-5822.2005.00574.x
    1. Rydkina E., Turpin L. C., Sahni S. K. (2008). Activation of p38 mitogen-activated protein kinase module facilitates in vitro host cell invasion by Rickettsia rickettsii. J. Med. Microbiol. 57, 1172–117510.1099/jmm.0.47806-0
    1. Sahni S. K., Rydkina E., Sahni A., Joshi S. G., Silverman D. J. (2005). Potential roles for regulatory oxygenases in rickettsial pathogenesis. Ann. N. Y. Acad. Sci. 1063, 207–21410.1196/annals.1355.033
    1. Sakamoto J. M., Azad A. F. (2007). Propagation of arthropod-borne Rickettsia spp. in two mosquito cell lines. Appl. Environ. Microbiol. 73, 6637–664310.1128/AEM.02101-06
    1. Sasakawa C. (2010). A new paradigm of bacteria-gut interplay brought through the study of Shigella. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86, 229–24310.2183/pjab.86.229
    1. Shi R. J., Simpson-Haidaris P. J., Marder V. J., Silverman D. J., Sporn L. A. (2000). Post-transcriptional regulation of endothelial cell plasminogen activator inhibitor-1 expression during Rickettsia rickettsii infection. Microb. Pathog. 28, 127–13310.1006/mpat.1999.0333
    1. Shmatikov M. D., Velik M. A. (1939). Tick-borne spotted fever. Klin. Med. (Mosk.) 7, 124–126
    1. Silverman D. J. (1984). Rickettsia rickettsii-induced cellular injury of human vascular endothelium in vitro. Infect. Immun. 44, 545–553
    1. Silverman D. J. (1986). Adherence of platelets to human endothelial cells infected by Rickettsia rickettsii. J. Infect. Dis. 153, 694–70010.1093/infdis/153.4.694
    1. Sporn L. A., Haidaris P. J., Shi R. J., Nemerson Y., Silverman D. J., Marder V. J. (1994). Rickettsia rickettsii infection of cultured human endothelial cells induces tissue factor expression. Blood 83, 1527–1534
    1. Sporn L. A., Lawrence S. O., Silverman D. J., Marder V. J. (1993). E-selectin-dependent neutrophil adhesion to Rickettsia rickettsii-infected endothelial cells. Blood 81, 2406–2412
    1. Sporn L. A., Marder V. J. (1996). Interleukin-1α production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation. Infect. Immun. 64, 1609–1613
    1. Sporn L. A., Shi R. J., Lawrence S. O., Silverman D. J., Marder V. J. (1991). Rickettsia rickettsii infection of cultured endothelial cells induces release of large von Willebrand factor multimers from Weibel–Palade bodies. Blood 78, 2595–2602
    1. Stenos J., Roux V., Walker D., Raoult D. (1998). Rickettsia honei sp. nov., the aetiological agent of Flinders Island spotted fever in Australia. Int. J. Syst. Bacteriol. 48, 1399–1404
    1. Stohard D. R., Clark J. B., Fuerst P. A. (1994). Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia. Int. J. Syst. Bacteriol. 44, 798–80410.1099/00207713-44-4-798
    1. Sumner J. W., Sims K. G., Jones D. C., Anderson B. E. (1995). Protection of guinea-pigs from experimental Rocky Mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 13, 29–3510.1016/0264-410X(95)80007-Z
    1. Tamura A., Ohashi N., Urakami H., Miyamura S. (1995). Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int. J. Syst. Bacteriol. 45, 589–59110.1099/00207713-45-2-371
    1. Teysseire N., Arnoux D., George G., Sampol J., Raoult D. (1992). von Willebrand factor release and thrombomodulin and tissue factor expression in Rickettsia conorii-infected endothelial cells. Infect. Immun. 60, 4388–4393
    1. Teysseire N., Boudier J. A., Raoult D. (1995). Rickettsia conorii entry into Vero cells. Infect. Immun. 63, 366–374
    1. Uchida T., Uchiyama T., Koyama A. H. (1988). Isolation of spotted fever group rickettsiae from humans in Japan. J. Infect. Dis. 158, 664–66510.1093/infdis/158.3.664-a
    1. Uchida T., Uchiyama T., Koyama A. H., Yu X. J., Walker D. H., Funato T., Kitamura Y. (1991). “Isolation and identification of Rickettsia japonica, causative agent of spotted fever group rickettsial infections in Japan,” in Rickettsiae and rickettsial diseases, eds Kazar J., Raoult D. (Bratislava: Publishing House of the Slovak Academy of Sciences; ), 389–395
    1. Uchida T., Uchiyama T., Kumano K., Walker D. H. (1992). Rickettsia japonica sp. nov., the etiological agent of spotted fever group rickettsiosis in Japan. Int. J. Syst. Bacteriol. 42, 303–305
    1. Uchida T., Yu X. J., Uchiyama T., Walker D. H. (1989). Identification of a unique spotted fever group Rickettsia from humans in Japan. J. Infect. Dis. 159, 1122–112610.1093/infdis/159.6.1122
    1. Uchiyama T. (1999). “Role of major surface antigens of Rickettsia japonica in the attachment to host cells,” in Rickettsiae and Rickettsial Diseases at the Turn of the Third Millennium, eds Raoult D., Brouqui P. (Pari: Elsevier; ), 182–188
    1. Uchiyama T. (2003). Adherence to and invasion of Vero cells by recombinant Escherichia coli expressing the outer membrane protein rOmpB of Rickettsia japonica. Ann. N. Y. Acad. Sci. 990, 585–59010.1111/j.1749-6632.2003.tb07431.x
    1. Uchiyama T. (2005). Growth of typhus group and spotted fever group rickettsiae in insect cells. Ann. N. Y. Acad. Sci. 1063, 215–22110.1196/annals.1355.034
    1. Uchiyama T. (2006). “Morphological study on the group-specific inhibition of rickettsial growth in insect cells,” in Proceedings of the 16th International Microscopy Congress. Vol.1. Biological and Medical Science. B-20. Bacteriology and Virology, eds Ichinose H., Sasaki T. (Sapporo: Publication committee of IMC16), 408
    1. Uchiyama T., Fujita H. (2012). Coinfection of mammalian and tick cells with pathogenic and nonpathogenic spotted fever group rickettsiae. Microb. Ecol. Health Dis. 23, 17461
    1. Uchiyama T., Kawano H., Kusuhara Y. (2006). The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 8, 801–80910.1016/j.micinf.2005.10.003
    1. Uchiyama T., Kishi M., Ogawa M. (2012). Restriction of the growth of a nonpathogenic spotted fever group rickettsia. FEMS Immunol. Med. Microbiol. 64, 42–4710.1111/j.1574-695X.2011.00879.x
    1. Uchiyama T., Ogawa M., Kishi M., Yamashita T., Kishimoto T., Kurane I. (2009). Restriction of the growth of typhus group rickettsiae in tick cells. Clin. Microbiol. Infect. 15, 332–33310.1111/j.1469-0691.2008.02263.x
    1. Uchiyama T., Uchida T. (1988). Ultrastructural study on Japanese isolates of spotted fever group rickettsiae. Microbiol. Immunol. 32, 1163–1166
    1. Uchiyama T., Uchida T., Walker D. H. (1991). “Analysis of antigens of Rickettsia japonica with species-specific monoclonal antibodies,” in Rickettsiae and Rickettsial Diseases, eds Kazar J., Raoult D. (Bratislava: Publishing House of the Slovak Academy of Sciences; ), 396–400
    1. Valbuena G., Feng H. M., Walker D. H. (2002). Mechanisms of immunity against rickettsiae: new perspectives and opportunities offered by unusual intracellular parasite. Microbes Infect. 4, 625–63310.1016/S1286-4579(02)01581-2
    1. Vishwanath S., Mcdonald G. A., Watkins N. G. (1990). A recombinant Rickettsia conorii vaccine protects guinea pigs from experimental boutonneuse fever and Rocky Mountain spotted fever. Infect. Immun. 58, 646–653
    1. Walker D. H., Hudnall S. D., Szaniawski W. K., Feng H. M. (2007). Monoclonal antibody-based immunohistochemical diagnosis of Rickettsialpox: the macrophage is the principal target. Mod. Pathol. 12, 529–533
    1. Walker T. S., Brown J. S., Hoover C. S., Morgan D. A. (1990). Endothelial prostaglandin secretion: effects of typhus Rickettsiae. J. Infect. Dis. 162, 1136–114410.1093/infdis/162.5.1136
    1. Weisburg W. G., Dobson M. E., Samuel J. E., Dasch G. A., Mallavia L. P., Baca O., Mandelco L., Sechrest J. E., Weiss E., Woese C. R. (1989). Phylogenetic diversity of the Rickettsiae. J. Bacteriol. 171, 4202–4206
    1. Whitworth T., Popov V. L., Yu X. J., Walker D. H., Bouyer D. H. (2005). Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect. Immun. 73, 6668–667310.1128/IAI.73.10.6668-6673.2005
    1. Wolbach S. B. (1919). Studies on Rocky Mountain spotted fever. J. Med. Res. 41, 1–197
    1. Yoshikawa Y., Ogawa M., Hain T., Yoshida M., Fukumatsu M., Kim M., Mimuro H., Nakagawa I., Yanagawa T., Ishii T., Kakizuka A., Sztul E., Chakraborty T., Sasakawa C. (2009). Lystera monocytogenes ActA-mediated escape from autophagic recognision. Nat. Cell Biol. 11, 1233–1240
    1. Zinsser H., Castaneda M. R. (1933). On the isolation from a case of Brill’s disease of a typhus strain resembling the European type. N. Engl. J. Med. 209, 815–81910.1056/NEJM193310262091701

Source: PubMed

3
購読する