Spasticity, Motor Recovery, and Neural Plasticity after Stroke

Sheng Li, Sheng Li

Abstract

Spasticity and weakness (spastic paresis) are the primary motor impairments after stroke and impose significant challenges for treatment and patient care. Spasticity emerges and disappears in the course of complete motor recovery. Spasticity and motor recovery are both related to neural plasticity after stroke. However, the relation between the two remains poorly understood among clinicians and researchers. Recovery of strength and motor function is mainly attributed to cortical plastic reorganization in the early recovery phase, while reticulospinal (RS) hyperexcitability as a result of maladaptive plasticity, is the most plausible mechanism for poststroke spasticity. It is important to differentiate and understand that motor recovery and spasticity have different underlying mechanisms. Facilitation and modulation of neural plasticity through rehabilitative strategies, such as early interventions with repetitive goal-oriented intensive therapy, appropriate non-invasive brain stimulation, and pharmacological agents, are the keys to promote motor recovery. Individualized rehabilitation protocols could be developed to utilize or avoid the maladaptive plasticity, such as RS hyperexcitability, in the course of motor recovery. Aggressive and appropriate spasticity management with botulinum toxin therapy is an example of how to create a transient plastic state of the neuromotor system that allows motor re-learning and recovery in chronic stages.

Keywords: motor recovery; neuroplasticity; rehabilitation; spasticity; stroke.

References

    1. Kamper DG, Fischer HC, Cruz EG, Rymer WZ. Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil (2006) 87:1262.10.1016/j.apmr.2006.05.013
    1. Zorowitz RD, Gillard PJ, Brainin M. Poststroke spasticity: sequelae and burden on stroke survivors and caregivers. Neurology (2013) 80:S45–52.10.1212/WNL.0b013e3182764c86
    1. Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP, editors. Spasticity: Disordered Motor Control. Chicago, IL: Year Book Medical Publishers; (1980). p. 485–94.
    1. Gracies JM. Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve (2005) 31:552–71.10.1002/mus.20285
    1. Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity – from a basic science point of view. Acta Physiol (2007) 189:171–80.10.1111/j.1748-1716.2006.01652.x
    1. Mukherjee A, Chakravarty A. Spasticity mechanisms – for the clinician. Front Neurol (2010) 1:149.10.3389/fneur.2010.00149
    1. Burke D, Wissel J, Donnan GA. Pathophysiology of spasticity in stroke. Neurology (2013) 80:S20–6.10.1212/WNL.0b013e31827624a7
    1. Brown P. Pathophysiology of spasticity. J Neurol Neurosurg Psychiatry (1994) 57:773–7.10.1136/jnnp.57.7.773
    1. Katz RT, Rymer WZ. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil (1989) 70:144–55.
    1. Burne JA, Carleton VL, O’Dwyer NJ. The spasticity paradox: movement disorder or disorder of resting limbs? J Neurol Neurosurg Psychiatry (2005) 76:47–54.10.1136/jnnp.2003.034785
    1. Li S, Kamper DG, Rymer WZ. Effects of changing wrist positions on finger flexor hypertonia in stroke survivors. Muscle Nerve (2006) 33:183–90.10.1002/mus.20453
    1. Kallenberg LA, Hermens HJ. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG. Muscle Nerve (2009) 39:177–85.10.1002/mus.21090
    1. Mottram CJ, Suresh NL, Heckman CJ, Gorassini MA, Rymer WZ. Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J Neurophysiol (2009) 102:2026–38.10.1152/jn.00151.2009
    1. Mottram CJ, Wallace CL, Chikando CN, Rymer WZ. Origins of spontaneous firing of motor units in the spastic-paretic biceps brachii muscle of stroke survivors. J Neurophysiol (2010) 104:3168–79.10.1152/jn.00463.2010
    1. Kallenberg LA, Hermens HJ. Motor unit properties of biceps brachii during dynamic contractions in chronic stroke patients. Muscle Nerve (2011) 43:112–9.10.1002/mus.21803
    1. Chang SH, Francisco GE, Zhou P, Rymer WZ, Li S. Spasticity, weakness, force variability, and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve (2013) 48:85–92.10.1002/mus.23699
    1. Li S, Chang SH, Francisco GE, Verduzco-Gutierrez M. Acoustic startle reflex in patients with chronic stroke at different stages of motor recovery: a pilot study. Top Stroke Rehabil (2014) 21:358–70.10.1310/tsr2104-358
    1. Li S, Durand-Sanchez A, Latash ML. Inter-limb force coupling is resistant to distorted visual feedback in chronic hemiparetic stroke. J Rehabil Med (2014) 46:206–11.10.2340/16501977-1256
    1. Li S, Francisco G. New insights into the pathophysiology of post-stroke spasticity. Front Hum Neurosci (2015) 9:192.10.3389/fnhum.2015.00192
    1. Buford JA, Davidson AG. Movement-related and preparatory activity in the reticulospinal system of the monkey. Exp Brain Res (2004) 159:284–300.10.1007/s00221-004-1956-4
    1. Buford JF, Robertson E, Williams PC. Meharry Medical College School of Medicine. Acad Med (2004) 79:S98–101.10.1097/00001888-200407001-00023
    1. Davidson AG, Buford JA. Motor outputs from the primate reticular formation to shoulder muscles as revealed by stimulus-triggered averaging. J Neurophysiol (2004) 92:83–95.10.1152/jn.00083.2003
    1. Davidson AG, Buford JA. Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res (2006) 173:25–39.10.1007/s00221-006-0374-1
    1. Banks JJ, Lavender SA, Buford JA, Sommerich CM. Measuring pad-pad pinch strength in a non-human primate: Macaca fascicularis. J Electromyogr Kinesiol (2007) 17:725–30.10.1016/j.jelekin.2006.07.009
    1. Davidson AG, Schieber MH, Buford JA. Bilateral spike-triggered average effects in arm and shoulder muscles from the monkey pontomedullary reticular formation. J Neurosci (2007) 27:8053–8.10.1523/JNEUROSCI.0040-07.2007
    1. Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci (2009) 29:4993–9.10.1523/JNEUROSCI.3720-08.2009
    1. Sakai ST, Davidson AG, Buford JA. Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis). Neuroscience (2009) 163:1158–70.10.1016/j.neuroscience.2009.07.036
    1. Herbert WJ, Davidson AG, Buford JA. Measuring the motor output of the pontomedullary reticular formation in the monkey: do stimulus-triggered averaging and stimulus trains produce comparable results in the upper limbs? Exp Brain Res (2010) 203:271–83.10.1007/s00221-010-2231-5
    1. Riddle CN, Baker SN. Convergence of pyramidal and medial brain stem descending pathways onto macaque cervical spinal interneurons. J Neurophysiol (2010) 103:2821–32.10.1152/jn.00491.2009
    1. Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol (2011) 589:5603–12.10.1113/jphysiol.2011.215160
    1. Fisher KM, Zaaimi B, Baker SN. Reticular formation responses to magnetic brain stimulation of primary motor cortex. J Physiol (2012) 590:4045–60.10.1113/jphysiol.2011.226209
    1. Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain (2012) 135:2277–89.10.1093/brain/aws115
    1. Fisher KM, Chinnery PF, Baker SN, Baker MR. Enhanced reticulospinal output in patients with (REEP1) hereditary spastic paraplegia type 31. J Neurol (2013) 260:3182–4.10.1007/s00415-013-7178-6
    1. Montgomery LR, Herbert WJ, Buford JA. Recruitment of ipsilateral and contralateral upper limb muscles following stimulation of the cortical motor areas in the monkey. Exp Brain Res (2013) 230:153–64.10.1007/s00221-013-3639-5
    1. Ortiz-Rosario A, Berrios-Torres I, Adeli H, Buford JA. Combined corticospinal and reticulospinal effects on upper limb muscles. Neurosci Lett (2014) 561:30–4.10.1016/j.neulet.2013.12.043
    1. Herbert WJ, Powell K, Buford JA. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res (2015) 233:3231–51.10.1007/s00221-015-4390-x
    1. Bradnam LV, Stinear CM, Byblow WD. Ipsilateral motor pathways after stroke: implications for noninvasive brain stimulation. Front Hum Neurosci (2013) 7:184.10.3389/fnhum.2013.00184
    1. Aluru V, Lu Y, Leung A, Verghese J, Raghavan P. Effect of auditory constraints on motor learning depends on stage of recovery post stroke. Front Neurol (2014) 5:106.10.3389/fneur.2014.00106
    1. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain (1951) 74:443–8.10.1093/brain/74.4.443
    1. Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther (1966) 46:357–75.
    1. Brunnstrom S. Movement Therapy in Hemiplagia. A Neurophysiological Approach. New York, NY: Harper & Row; (1970).
    1. Malhotra S, Pandyan AD, Rosewilliam S, Roffe C, Hermens H. Spasticity and contractures at the wrist after stroke: time course of development and their association with functional recovery of the upper limb. Clin Rehabil (2011) 25:184–91.10.1177/0269215510381620
    1. Farmer SF, Harrison LM, Ingram DA, Stephens JA. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology (1991) 41:1505–10.10.1212/WNL.41.9.1505
    1. Ward AB. A literature review of the pathophysiology and onset of post-stroke spasticity. Eur J Neurol (2012) 19:21–7.10.1111/j.1468-1331.2011.03448.x
    1. Balakrishnan S, Ward AB. The diagnosis and management of adults with spasticity. Handb Clin Neurol (2013) 110:145–60.10.1016/B978-0-444-52901-5.00013-7
    1. Gracies JM. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve (2005) 31:535–51.10.1002/mus.20284
    1. Nudo RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol (2006) 16:638–44.10.1016/j.conb.2006.10.004
    1. Zondervan DK, Augsburger R, Bodenhoefer B, Friedman N, Reinkensmeyer DJ, Cramer SC. Machine-based, self-guided home therapy for individuals with severe arm impairment after stroke: a randomized controlled trial. Neurorehabil Neural Repair (2015) 29:395–406.10.1177/1545968314550368
    1. Gourab K, Schmit BD, Hornby TG. Increased lower limb spasticity but not strength or function following a single-dose serotonin reuptake inhibitor in chronic stroke. Arch Phys Med Rehabil (2015) 96:2112–9.10.1016/j.apmr.2015.08.431
    1. Seo NJ, Fischer HW, Bogey RA, Rymer WZ, Kamper DG. Effect of a serotonin antagonist on delay in grip muscle relaxation for persons with chronic hemiparetic stroke. Clin Neurophysiol (2011) 122:796–802.10.1016/j.clinph.2010.10.035
    1. Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science (1996) 272:1791–4.10.1126/science.272.5269.1791
    1. Palmer E, Ashby P, Hajek VE. Ipsilateral fast corticospinal pathways do not account for recovery in stroke. Ann Neurol (1992) 32:519–25.10.1002/ana.410320407
    1. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol (1993) 33:181–9.10.1002/ana.410330208
    1. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol (1996) 101:316–28.10.1016/0924-980X(96)95560-5
    1. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke (2001) 32:1134–9.10.1161/01.STR.32.5.1134
    1. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex (2002) 12:281–96.10.1093/cercor/12.3.281
    1. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain (2003) 126:2476–96.10.1093/brain/awg145
    1. Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport (2005) 16:1551–5.10.1097/01.wnr.0000177010.44602.5e
    1. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology (2005) 64:1802–4.10.1212/01.WNL.0000161839.38079.92
    1. Boudrias MH, Belhaj-Saif A, Park MC, Cheney PD. Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex (2006) 16:632–8.10.1093/cercor/bhj009
    1. Kim YH, You SH, Kwon YH, Hallett M, Kim JH, Jang SH. Longitudinal fMRI study for locomotor recovery in patients with stroke. Neurology (2006) 67:330–3.10.1212/01.wnl.0000225178.85833.0d
    1. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci (2007) 25:123–9.
    1. Dafotakis M, Grefkes C, Eickhoff SB, Karbe H, Fink GR, Nowak DA. Effects of rTMS on grip force control following subcortical stroke. Exp Neurol (2008) 211:407–12.10.1016/j.expneurol.2008.02.018
    1. Ward NS, Swayne OB, Newton JM. Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging (2008) 29:1434–46.10.1016/j.neurobiolaging.2007.04.017
    1. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci (2010) 30:11926–37.10.1523/JNEUROSCI.5642-09.2010
    1. Madhavan S, Krishnan C, Jayaraman A, Rymer WZ, Stinear JW. Corticospinal tract integrity correlates with knee extensor weakness in chronic stroke survivors. Clin Neurophysiol (2011) 122:1588–94.10.1016/j.clinph.2011.01.011
    1. Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol (2011) 7:76–85.10.1038/nrneurol.2010.200
    1. Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke (2012) 43:2819–28.10.1161/STROKEAHA.112.654228
    1. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opinion Neurol (2006) 19:84.10.1097/
    1. Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair (2009) 23:313–9.10.1177/1545968308328727
    1. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci (2004) 22:281–99.
    1. Page SJ, Gater DR, Bach YRP. Reconsidering the motor recovery plateau in stroke rehabilitation. Arch Phys Med Rehabil (2004) 85:1377–81.10.1016/j.apmr.2003.12.031
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol (2009) 8:741–54.10.1016/S1474-4422(09)70150-4
    1. Takeuchi N, Izumi S. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat (2013) 2013:128641.10.1155/2013/128641
    1. Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke (1999) 30:586–92.10.1161/01.STR.30.3.586
    1. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA (2006) 296:2095–104.10.1001/jama.296.17.2095
    1. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng (1998) 6:75–87.10.1109/86.662623
    1. Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology (1999) 53:1874–6.10.1212/WNL.53.8.1874
    1. Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation (2008) 23:81–7.
    1. Hesse S, Werner C, Bardeleben A, Barbeau H. Body weight-supported treadmill training after stroke. Curr Atheroscler Rep (2001) 3:287–94.10.1007/s11883-001-0021-z
    1. Hoyer E, Jahnsen R, Stanghelle JK, Strand LI. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial. Disabil Rehabil (2012) 34:210–9.10.3109/09638288.2011.593681
    1. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke (2000) 31:1210–6.10.1161/01.STR.31.6.1210
    1. Levy CE, Nichols DS, Schmalbrock PM, Keller P, Chakeres DW. Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am J Phys Med Rehabil (2001) 80:4–12.10.1097/00002060-200101000-00003
    1. Miyai I, Suzuki M, Hatakenaka M, Kubota K. Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res (2006) 169:85–91.10.1007/s00221-005-0123-x
    1. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain (2008) 131:425–37.10.1093/brain/awm311
    1. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol (2011) 10:123–30.10.1016/S1474-4422(10)70314-8
    1. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol (1991) 29:63–71.10.1002/ana.410290112
    1. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke (1997) 28:2518–27.10.1161/01.STR.28.12.2518
    1. Netz J, Lammers T, Homberg V. Reorganization of motor output in the non-affected hemisphere after stroke. Brain (1997) 120:1579–86.10.1093/brain/120.9.1579
    1. Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol (2004) 55:400–9.10.1002/ana.10848
    1. Takeuchi N, Izumi SI. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast (2012) 2012:359728.10.1155/2012/359728
    1. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol (2006) 5:708–12.10.1016/S1474-4422(06)70525-7
    1. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain (2005) 128:490–9.10.1093/brain/awh369
    1. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke (2005) 36:2681–6.10.1161/01.STR.0000189658.51972.34
    1. Nowak DA, Grefkes C, Dafotakis M, Eickhoff S, Kust J, Karbe H, et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol (2008) 65:741–7.10.1001/archneur.65.6.741
    1. Nowak DA, Grefkes C, Ameli M, Fink GR. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair (2009) 23:641–56.10.1177/1545968309336661
    1. Lance JW. Pathophysiology of spasticity and clinical experience with baclofen. In: Feldman RG, Young RR, Koella WP, editors. Spasticity: Disordered Motor Control. Chicago, IL: Year Book Medical Publishers; (1980). p. 185–203.
    1. Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol (2014) 252:47–56.10.1016/j.expneurol.2013.11.019
    1. Young RR. Spasticity: a review. Neurology (1994) 44:S12–20.
    1. Sheean G. Neurophysiology of spasticity. 2nd ed In: Barnes MP, Johnson GR, editors. Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology. Cambridge: Cambridge University Press; (2008). p. 9–63.
    1. Nathan PW, Smith MC. Long descending tracts in man. I. Review of present knowledge. Brain (1955) 78:248–303.10.1093/brain/78.2.248
    1. Schreiner LH, Lindsley DB, Magoun HW. Role of brain stem facilitatory systems in maintenance of spasticity. J Neurophysiol (1949) 12:207–16.
    1. Bucy PC. Studies on the human neuromuscular mechanism. II. Effect of ventromedial cordotomy on muscular spasticity in man. Arch Neurol Psychiatry (1938) 40:639–62.10.1001/archneurpsyc.1938.02270100011001
    1. Nyberg-Hansen R. Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J Comp Neurol (1964) 122:355–67.10.1002/cne.901220307
    1. Miller DM, Klein CS, Suresh NL, Rymer WZ. Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role. Clin Neurophysiol (2014) 125(10):2070–8.10.1016/j.clinph.2014.01.035
    1. Davis M, Gendelman DS, Tischler MD, Gendelman PM. A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci (1982) 2:791.
    1. Brown P, Rothwell JC, Thompson PD, Britton TC, Day BL, Marsden CD. New observations on the normal auditory startle reflex in man. Brain (1991) 114(Pt 4):1891–902.10.1093/brain/114.4.1891
    1. Voordecker P, Mavroudakis N, Blecic S, Hildebrand J, Zegers de Beyl D. Audiogenic startle reflex in acute hemiplegia. Neurology (1997) 49:470–3.10.1212/WNL.49.2.470
    1. Jankelowitz SK, Colebatch JG. The acoustic startle reflex in ischemic stroke. Neurology (2004) 62:114–6.10.1212/01.WNL.0000101711.48946.35
    1. Coombes SA, Janelle CM, Cauraugh JH. Chronic stroke and aging: the impact of acoustic stimulus intensity on fractionated reaction time. Neurosci Lett (2009) 452:151.10.1016/j.neulet.2009.01.041
    1. Honeycutt CF, Perreault EJ. Planning of ballistic movement following stroke: insights from the startle reflex. PLoS One (2012) 7:e43097.10.1371/journal.pone.0043097
    1. Drew T, Prentice S, Schepens B. Cortical and brainstem control of locomotion. Prog Brain Res (2004) 143:251–61.10.1016/S0079-6123(03)43025-2
    1. Calota A, Feldman AG, Levin MF. Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin Neurophysiol (2008) 119:2329–37.10.1016/j.clinph.2008.07.215
    1. Calota A, Levin MF. Tonic stretch reflex threshold as a measure of spasticity: implications for clinical practice. Top Stroke Rehabil (2009) 16:177–88.10.1310/tsr1603-177
    1. Bhadane MY, Gao F, Francisco GE, Zhou P, Li S. Correlation of resting elbow angle with spasticity in chronic stroke survivors. Front Neurol (2015) 6:183.10.3389/fneur.2015.00183
    1. Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol (2010) 9:1228–32.10.1016/S1474-4422(10)70247-7
    1. Byblow WD, Stinear CM, Barber PA, Petoe MA, Ackerley SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol (2015) 78:848–59.10.1002/ana.24472
    1. Schulz R, Wessel MJ, Zimerman M, Timmermann JE, Gerloff C, Hummel FC. White matter integrity of specific dentato-thalamo-cortical pathways is associated with learning gains in precise movement timing. Cereb Cortex (2015) 25:1707–14.10.1093/cercor/bht356
    1. Paltsev YI, Elner AM. Change in the functional state of the segmental apparatus of the spinal cord under the influence of sound stimuli and its role in voluntary movement. Biophysics (1967) 12:1219–26.
    1. Rossignol S, Jones GM. Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalogr Clin Neurophysiol (1976) 41:83–92.10.1016/0013-4694(76)90217-0
    1. Miller LC, Dewald JPA. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol (2012) 123:1216–25.10.1016/j.clinph.2012.01.009
    1. Whitall J, Waller SM, Silver KHC, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke (2000) 31:2390–5.10.1161/01.STR.31.10.2390
    1. Schneider S, Schönle PW, Altenmüller E, Münte TF. Using musical instruments to improve motor skill recovery following a stroke. J Neurol (2007) 254:1339.10.1007/s00415-006-0523-2
    1. Jun EM, Roh YH, Kim MJ. The effect of music-movement therapy on physical and psychological states of stroke patients. J Clin Nurs (2013) 22:22–31.10.1111/j.1365-2702.2012.04243.x
    1. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev (2014) 11:CD010820.10.1002/14651858.CD010820.pub2
    1. McMorland AJC, Runnalls KD, Byblow WD. A neuroanatomical framework for upper limb synergies after stroke. Front Hum Neurosci (2015) 9:82.10.3389/fnhum.2015.00082
    1. Kamper DG, Rymer WZ. Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve (2001) 24:673–81.10.1002/mus.1054
    1. Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain (1996) 119:281–93.10.1093/brain/119.1.281
    1. Hampton S, Armstrong G, Ayyar M, Li S. Quantification of perceived exertion during isometric force production with the Borg scale in healthy individuals and patients with chronic stroke. Top Stroke Rehabil (2014) 21:33–9.10.1310/tsr2101-33
    1. Yen JT, Li S. Altered force perception in stroke survivors with spastic hemiplegia. J Rehabil Med (2015) 47(10):917–23.10.2340/16501977-2019
    1. Chang S-H, Durand-Sanchez A, DiTommaso C, Li S. Interlimb interactions during bilateral voluntary elbow flexion tasks in chronic hemiparetic stroke. Physiol Rep (2013) 1:e00010.10.1002/phy2.10
    1. Jahn R. Neuroscience. A neuronal receptor for botulinum toxin. Science (2006) 312:540–1.10.1126/science.1127236
    1. Krishnan RV. Botulinum toxin: from spasticity reliever to a neuromotor re-learning tool. Int J Neurosci (2005) 115:1451–67.10.1080/00207450590956576
    1. Kaji R. Direct central action of intramuscularly injected botulinum toxin: is it harmful or beneficial? J Physiol (2013) 591:749–749.10.1113/jphysiol.2012.246322
    1. Chang SH, Francisco GE, Li S. Botulinum toxin (BT) injection improves voluntary motor control in selected patients with post-stroke spasticity. Neural Regen Res (2012) 7:1436–9.
    1. Hou S, Ivanhoe C, Li S. Botulinum toxin injection for spastic scapular dyskinesia after stroke: case series. Medicine (2015) 94:e1300.10.1097/MD.0000000000001300
    1. Bensmail D, Robertson J, Fermanian C, Roby-Brami A. Botulinum toxin to treat upper-limb spasticity in hemiparetic patients: grasp strategies and kinematics of reach-to-grasp movements. Neurorehabil Neural Repair (2010) 24:141–51.10.1177/1545968309347683

Source: PubMed

3
購読する