Potential vaccines and post-exposure treatments for filovirus infections

Brian M Friedrich, John C Trefry, Julia E Biggins, Lisa E Hensley, Anna N Honko, Darci R Smith, Gene G Olinger, Brian M Friedrich, John C Trefry, Julia E Biggins, Lisa E Hensley, Anna N Honko, Darci R Smith, Gene G Olinger

Abstract

Viruses of the family Filoviridae represent significant health risks as emerging infectious diseases as well as potentially engineered biothreats. While many research efforts have been published offering possibilities toward the mitigation of filoviral infection, there remain no sanctioned therapeutic or vaccine strategies. Current progress in the development of filovirus therapeutics and vaccines is outlined herein with respect to their current level of testing, evaluation, and proximity toward human implementation, specifically with regard to human clinical trials, nonhuman primate studies, small animal studies, and in vitro development. Contemporary methods of supportive care and previous treatment approaches for human patients are also discussed.

Keywords: Ebola; Marburg virus; animal models; clinical trials; ebolavirus; filovirus; marburgvirus; non-human primates; post-exposure treatments; vaccines.

References

    1. Kuhn J.H., Becker S., Ebihara H., Geisbert T.W., Johnson K.M., Kawaoka Y., Lipkin W.I., Negredo A.I., Netesov S.V., Nichol S.T., et al. Proposal for a revised taxonomy of the family filoviridae: Classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 2010;155:2083–2103. doi: 10.1007/s00705-010-0814-x.
    1. Kuhn J.H., Becker S., Ebihara H., Geisbert T.W., Jahrling P., Kawaoka Y., Netesov S.V., Nichol S.T., Peters C.J., Volchkov V.E., et al. Family Filoviridae. In: King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J., editors. Virus Taxonomy-Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press; London, UK: 2011. pp. 665–671.
    1. Martini G.A., Knauff H.G., Schmidt H.A., Mayer G., Baltzer G. A hitherto unknown infectious disease contracted from monkeys. "Marburg-virus" disease. Ger. Med. Mon. 1968;13:457–470.
    1. Kiley M.P., Bowen E.T., Eddy G.A., Isaacson M., Johnson K.M., McCormick J.B., Murphy F.A., Pattyn S.R., Peters D., Prozesky O.W., et al. Filoviridae: A taxonomic home for marburg and ebola viruses? Intervirology. 1982;18:24–32. doi: 10.1159/000149300.
    1. Kuhn J.H. Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Arch. Virol. Suppl. 2008;20:13–360. doi: 10.1007/978-3-211-69495-4_1.
    1. Gene O.G., Julia B.E., Vanessa M.R., Victoria W.J., Thomas G.W., Lisa H.E. Drug targets in infections with ebola and marburg viruses. Infect. Disord. Drug Targets. 2009;9:191–200.
    1. Gonzalez J.P., Pourrut X., Leroy E. Ebolavirus and other filoviruses. Curr. Top. Microbiol. Immunol. 2007;315:363–387.
    1. Leroy E.M., Epelboin A., Mondonge V., Pourrut X., Gonzalez J.P., Muyembe-Tamfum J.J., Formenty P. Human ebola outbreak resulting from direct exposure to fruit bats in luebo, democratic republic of congo, 2007. Vector Borne Zoonotic Dis. 2009;9:723–728. doi: 10.1089/vbz.2008.0167.
    1. Pourrut X., Delicat A., Rollin P.E., Ksiazek T.G., Gonzalez J.P., Leroy E.M. Spatial and temporal patterns of zaire ebolavirus antibody prevalence in the possible reservoir bat species. J. Infect. Dis. 2007;196:S176–S183.
    1. Pourrut X., Souris M., Towner J.S., Rollin P.E., Nichol S.T., Gonzalez J.P., Leroy E. Large serological survey showing cocirculation of ebola and marburg viruses in gabonese bat populations, and a high seroprevalence of both viruses in rousettus aegyptiacus. BMC Infect. Dis. 2009;9
    1. Towner J.S., Pourrut X., Albarino C.G., Nkogue C.N., Bird B.H., Grard G., Ksiazek T.G., Gonzalez J.P., Nichol S.T., Leroy E.M. Marburg virus infection detected in a common african bat. PLoS One. 2007;2:e764.
    1. Barrette R.W., Metwally S.A., Rowland J.M., Xu L., Zaki S.R., Nichol S.T., Rollin P.E., Towner J.S., Shieh W.J., Batten B., et al. Discovery of swine as a host for the reston ebolavirus. Science. 2009;325:204–206.
    1. Geisbert T.W., Jahrling P.B. Differentiation of filoviruses by electron microscopy. Virus Res. 1995;39:129–150.
    1. Regnery R.L., Johnson K.M., Kiley M.P. Virion nucleic acid of ebola virus. J. Virol. 1980;36:465–469.
    1. Sanchez A., Geisbert T.W., Feldmann H. Filoviridae: Marburg and Ebola Viruses. In: Knipe D.M., Howley P.M., editors. Fields Virology. Vol. 1. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2007. pp. 1409–1448.
    1. Richardson J.S., Dekker J.D., Croyle M.A., Kobinger G.P. Recent advances in ebolavirus vaccine development. Hum. Vaccin. 2010;6:439–449.
    1. Bradfute S.B., Dye J.M., Jr., Bavari S. Filovirus vaccines. Hum. Vaccin. 2011;7:701–711.
    1. Volchkov V.E., Feldmann H., Volchkova V.A., Klenk H.D. Processing of the ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl. Acad. Sci. USA. 1998;95:5762–5767.
    1. Alvarez C.P., Lasala F., Carrillo J., Muniz O., Corbi A.L., Delgado R. C-type lectins dc-sign and l-sign mediate cellular entry by ebola virus in cis and in trans. J. Virol. 2002;76:6841–6844.
    1. Carette J.E., Raaben M., Wong A.C., Herbert A.S., Obernosterer G., Mulherkar N., Kuehne A.I., Kranzusch P.J., Griffin A.M., Ruthel G., et al. Ebola virus entry requires the cholesterol transporter niemann-pick c1. Nature. 2011;477:340–343.
    1. Cote M., Misasi J., Ren T., Bruchez A., Lee K., Filone C.M., Hensley L., Li Q., Ory D., Chandran K., et al. Small molecule inhibitors reveal niemann-pick c1 is essential for ebola virus infection. Nature. 2011;477:344–348.
    1. Kondratowicz A.S., Lennemann N.J., Sinn P.L., Davey R.A., Hunt C.L., Moller-Tank S., Meyerholz D.K., Rennert P., Mullins R.F., Brindley M., et al. T-cell immunoglobulin and mucin domain 1 (tim-1) is a receptor for zaire ebolavirus and lake victoria marburgvirus. Proc. Natl. Acad. Sci. USA. 2011;108:8426–8431.
    1. Genton C., Cristescu R., Gatti S., Levrero F., Bigot E., Caillaud D., Pierre J.S., Menard N. Recovery potential of a western lowland gorilla population following a major ebola outbreak: Results from a ten year study. PLoS One. 2012;7:e37106.
    1. Bradfute S.B., Bavari S. Correlates of immunity to filovirus infection. Viruses. 2011;3:982–1000.
    1. Roddy P., Colebunders R., Jeffs B., Palma P.P., van Herp M., Borchert M. Filovirus hemorrhagic fever outbreak case management: A review of current and future treatment options. J. Infect. Dis. 2011;204:S791–S795.
    1. Jeffs B., Roddy P., Weatherill D., de la Rosa O., Dorion C., Iscla M., Grovas I., Palma P.P., Villa L., Bernal O., et al. The medecins sans frontieres intervention in the marburg hemorrhagic fever epidemic, uige, angola, 2005. I. Lessons learned in the hospital. J. Infect. Dis. 2007;196:S154–S161. doi: 10.1086/520548.
    1. Singhi S., Kissoon N., Bansal A. Dengue and dengue hemorrhagic fever: Management issues in an intensive care unit. J. Pediatr. (Rio J) 2007;83:S22–S35. doi: 10.1590/S0021-75572007000300004.
    1. Kortepeter M.G., Lawler J.V., Honko A., Bray M., Johnson J.C., Purcell B.K., Olinger G.G., Rivard R., Hepburn M.J., Hensley L.E. Real-time monitoring of cardiovascular function in rhesus macaques infected with zaire ebolavirus. J. Infect. Dis. 2011;204:S1000–S1010.
    1. Stroher U., Feldmann H. Progress towards the treatment of ebola haemorrhagic fever. Expert Opin. Investig. Drugs. 2006;15:1523–1535.
    1. Fernandez P., Trenholme A., Abarca K., Griffin M.P., Hultquist M., Harris B., Losonsky G.A. A phase 2, randomized, double-blind safety and pharmacokinetic assessment of respiratory syncytial virus (rsv) prophylaxis with motavizumab and palivizumab administered in the same season. BMC Pediatr. 2010;10
    1. Geevarghese B., Simoes E.A. Antibodies for prevention and treatment of respiratory syncytial virus infections in children. Antivir. Ther. 2012;17:201–211.
    1. Feldmann H., Jones S., Klenk H.D., Schnittler H.J. Ebola virus: From discovery to vaccine. Nat. Rev. Immunol. 2003;3:677–685.
    1. Mupapa K., Massamba M., Kibadi K., Kuvula K., Bwaka A., Kipasa M., Colebunders R., Muyembe-Tamfum J.J. Treatment of ebola hemorrhagic fever with blood transfusions from convalescent patients. International scientific and technical committee. J. Infect. Dis. 1999;179:S18–S23.
    1. Slenczka W.G. The marburg virus outbreak of 1967 and subsequent episodes. Curr. Top. Microbiol. Immunol. 1999;235:49–75.
    1. Stille W., Bohle E., Helm E., van Rey W., Siede W. An infectious disease transmitted by cercopithecus aethiops. ("green monkey disease") Ger. Med. Mon. 1968;13:470–478.
    1. Jahrling P.B., Geisbert T.W., Geisbert J.B., Swearengen J.R., Bray M., Jaax N.K., Huggins J.W., LeDuc J.W., Peters C.J. Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental ebola virus infections. J. Infect. Dis. 1999;179:S224–S234.
    1. Oswald W.B., Geisbert T.W., Davis K.J., Geisbert J.B., Sullivan N.J., Jahrling P.B., Parren P.W., Burton D.R. Neutralizing antibody fails to impact the course of ebola virus infection in monkeys. PLoS Pathog. 2007;3:e9.
    1. Takada A., Ebihara H., Jones S., Feldmann H., Kawaoka Y. Protective efficacy of neutralizing antibodies against ebola virus infection. Vaccine. 2007;25:993–999.
    1. Nakayama E., Tomabechi D., Matsuno K., Kishida N., Yoshida R., Feldmann H., Takada A. Antibody-dependent enhancement of marburg virus infection. J. Infect. Dis. 2011;204:S978–S985.
    1. Takada A., Ebihara H., Feldmann H., Geisbert T.W., Kawaoka Y. Epitopes required for antibody-dependent enhancement of ebola virus infection. J. Infect. Dis. 2007;196:S347–S356.
    1. Takada A., Feldmann H., Ksiazek T.G., Kawaoka Y. Antibody-dependent enhancement of ebola virus infection. J. Virol. 2003;77:7539–7544.
    1. Maruyama T., Parren P.W., Sanchez A., Rensink I., Rodriguez L.L., Khan A.S., Peters C.J., Burton D.R. Recombinant human monoclonal antibodies to ebola virus. J. Infect. Dis. 1999;179:S235–S239.
    1. Parren P.W., Geisbert T.W., Maruyama T., Jahrling P.B., Burton D.R. Pre- and postexposure prophylaxis of ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J. Virol. 2002;76:6408–6412.
    1. Wilson J.A., Hevey M., Bakken R., Guest S., Bray M., Schmaljohn A.L., Hart M.K. Epitopes involved in antibody-mediated protection from ebola virus. Science. 2000;287:1664–1666.
    1. Dye J.M., Herbert A.S., Kuehne A.I., Barth J.F., Muhammad M.A., Zak S.E., Ortiz R.A., Prugar L.I., Pratt W.D. Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc. Natl. Acad. Sci. USA. 2012;109:5034–5039.
    1. Marzi A., Yoshida R., Miyamoto H., Ishijima M., Suzuki Y., Higuchi M., Matsuyama Y., Igarashi M., Nakayama E., Kuroda M., et al. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of ebola hemorrhagic fever. PLoS One. 2012;7:e36192.
    1. Qiu X., Audet J., Wong G., Pillet S., Bello A., Cabral T., Strong J.E., Plummer F., Corbett C.R., Alimonti J.B., et al. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 2012;4:138–181.
    1. Zeitlin L., Pettitt J., Scully C., Bohorova N., Kim D., Pauly M., Hiatt A., Ngo L., Steinkellner H., Whaley K.J., et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an ebola virus immunoprotectant. Proc. Natl. Acad. Sci. USA. 2011;108:20690–20694.
    1. Qiu X., Alimonti J.B., Melito P.L., Fernando L., Stroher U., Jones S.M. Characterization of zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin. Immunol. 2011;141:218–227.
    1. Lee J.E., Saphire E.O. Neutralizing ebolavirus: Structural insights into the envelope glycoprotein and antibodies targeted against it. Curr. Opin. Struct. Biol. 2009;19:408–417.
    1. Martin J.E., Sullivan N.J., Enama M.E., Gordon I.J., Roederer M., Koup R.A., Bailer R.T., Chakrabarti B.K., Bailey M.A., Gomez P.L., et al. A DNA vaccine for ebola virus is safe and immunogenic in a phase i clinical trial. Clin. Vaccine Immunol. 2006;13:1267–1277. doi: 10.1128/CVI.00162-06.
    1. Sullivan N.J., Geisbert T.W., Geisbert J.B., Shedlock D.J., Xu L., Lamoreaux L., Custers J.H., Popernack P.M., Yang Z.Y., Pau M.G., et al. Immune protection of nonhuman primates against ebola virus with single low-dose adenovirus vectors encoding modified gps. PLoS Med. 2006;3:e177.
    1. Sullivan N.J., Sanchez A., Rollin P.E., Yang Z.Y., Nabel G.J. Development of a preventive vaccine for ebola virus infection in primates. Nature. 2000;408:605–609.
    1. Ledgerwood J.E., Costner P., Desai N., Holman L., Enama M.E., Yamshchikov G., Mulangu S., Hu Z., Andrews C.A., Sheets R.A., et al. A replication defective recombinant ad5 vaccine expressing ebola virus gp is safe and immunogenic in healthy adults. Vaccine. 2010;29:304–313. doi: 10.1016/j.vaccine.2010.10.037.
    1. Swenson D.L., Wang D., Luo M., Warfield K.L., Woraratanadharm J., Holman D.H., Dong J.Y., Pratt W.D. Vaccine to confer to nonhuman primates complete protection against multistrain ebola and marburg virus infections. Clin. Vaccine Immunol. 2008;15:460–467.
    1. Pratt W.D., Wang D., Nichols D.K., Luo M., Woraratanadharm J., Dye J.M., Holman D.H., Dong J.Y. Protection of nonhuman primates against two species of ebola virus infection with a single complex adenovirus vector. Clin. Vaccine Immunol. 2010;17:572–581.
    1. Richardson J.S., Yao M.K., Tran K.N., Croyle M.A., Strong J.E., Feldmann H., Kobinger G.P. Enhanced protection against ebola virus mediated by an improved adenovirus-based vaccine. PLoS One. 2009;4:e5308.
    1. Choi J.H., Schafer S.C., Zhang L., Kobinger G.P., Juelich T., Freiberg A.N., Croyle M.A. A single sublingual dose of an adenovirus-based vaccine protects against lethal ebola challenge in mice and guinea pigs. Mol. Pharm. 2012;9:156–167.
    1. Geisbert T.W., Bailey M., Hensley L., Asiedu C., Geisbert J., Stanley D., Honko A., Johnson J., Mulangu S., Pau M.G., et al. Recombinant adenovirus serotype 26 (ad26) and ad35 vaccine vectors bypass immunity to ad5 and protect nonhuman primates against ebolavirus challenge. J. Virol. 2011;85:4222–4233. doi: 10.1128/JVI.02407-10.
    1. Wagner R.R., Rose J.K. Rhabdoviridae: The Viruses and Their Replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 1996. pp. 1121–1135.
    1. Geisbert T.W., Daddario-Dicaprio K.M., Lewis M.G., Geisbert J.B., Grolla A., Leung A., Paragas J., Matthias L., Smith M.A., Jones S.M., et al. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog. 2008;4:e1000225. doi: 10.1371/journal.ppat.1000225.
    1. Mire C.E., Miller A.D., Carville A., Westmoreland S.V., Geisbert J.B., Mansfield K.G., Feldmann H., Hensley L.E., Geisbert T.W. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates. PLoS Negl. Trop. Dis. 2012;6:e1567.
    1. Geisbert T.W., Geisbert J.B., Leung A., Daddario-DiCaprio K.M., Hensley L.E., Grolla A., Feldmann H. Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus. J. Virol. 2009;83:7296–7304.
    1. Daddario-DiCaprio K.M., Geisbert T.W., Geisbert J.B., Stroher U., Hensley L.E., Grolla A., Fritz E.A., Feldmann F., Feldmann H., Jones S.M. Cross-protection against marburg virus strains by using a live, attenuated recombinant vaccine. J. Virol. 2006;80:9659–9666.
    1. Geisbert T.W., Daddario-DiCaprio K.M., Williams K.J., Geisbert J.B., Leung A., Feldmann F., Hensley L.E., Feldmann H., Jones S.M. Recombinant vesicular stomatitis virus vector mediates postexposure protection against sudan ebola hemorrhagic fever in nonhuman primates. J. Virol. 2008;82:5664–5668.
    1. Feldmann H., Jones S.M., Daddario-DiCaprio K.M., Geisbert J.B., Stroher U., Grolla A., Bray M., Fritz E.A., Fernando L., Feldmann F., et al. Effective post-exposure treatment of ebola infection. PLoS Pathog. 2007;3:e2. doi: 10.1371/journal.ppat.0030002.
    1. Gunther S., Feldmann H., Geisbert T.W., Hensley L.E., Rollin P.E., Nichol S.T., Stroher U., Artsob H., Peters C.J., Ksiazek T.G., et al. Management of accidental exposure to ebola virus in the biosafety level 4 laboratory, hamburg, germany. J. Infect. Dis. 2011;204:S785–S790.
    1. Blaney J.E., Wirblich C., Papaneri A.B., Johnson R.F., Myers C.J., Juelich T.L., Holbrook M.R., Freiberg A.N., Bernbaum J.G., Jahrling P.B., et al. Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and ebola viruses. J. Virol. 2011;85:10605–10616.
    1. Pushko P., Parker M., Ludwig G.V., Davis N.L., Johnston R.E., Smith J.F. Replicon-helper systems from attenuated venezuelan equine encephalitis virus: Expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology. 1997;239:389–401. doi: 10.1006/viro.1997.8878.
    1. Pushko P., Bray M., Ludwig G.V., Parker M., Schmaljohn A., Sanchez A., Jahrling P.B., Smith J.F. Recombinant rna replicons derived from attenuated venezuelan equine encephalitis virus protect guinea pigs and mice from ebola hemorrhagic fever virus. Vaccine. 2000;19:142–153.
    1. Hevey M., Negley D., Pushko P., Smith J., Schmaljohn A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology. 1998;251:28–37.
    1. Wilson J.A., Bray M., Bakken R., Hart M.K. Vaccine potential of ebola virus vp24, vp30, vp35, and vp40 proteins. Virology. 2001;286:384–390. doi: 10.1006/viro.2001.1012.
    1. Olinger G.G., Bailey M.A., Dye J.M., Bakken R., Kuehne A., Kondig J., Wilson J., Hogan R.J., Hart M.K. Protective cytotoxic t-cell responses induced by venezuelan equine encephalitis virus replicons expressing ebola virus proteins. J. Virol. 2005;79:14189–14196.
    1. Bukreyev A., Yang L., Zaki S.R., Shieh W.J., Rollin P.E., Murphy B.R., Collins P.L., Sanchez A. A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose ebola virus challenge. J. Virol. 2006;80:2267–2279.
    1. Bukreyev A., Rollin P.E., Tate M.K., Yang L., Zaki S.R., Shieh W.J., Murphy B.R., Collins P.L., Sanchez A. Successful topical respiratory tract immunization of primates against ebola virus. J. Virol. 2007;81:6379–6388.
    1. Henrickson K.J. Parainfluenza viruses. Clin. Microbiol. Rev. 2003;16:242–264.
    1. Bukreyev A.A., Dinapoli J.M., Yang L., Murphy B.R., Collins P.L. Mucosal parainfluenza virus-vectored vaccine against ebola virus replicates in the respiratory tract of vector-immune monkeys and is immunogenic. Virology. 2010;399:290–298.
    1. Bukreyev A., Huang Z., Yang L., Elankumaran S., St Claire M., Murphy B.R., Samal S.K., Collins P.L. Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J. Virol. 2005;79:13275–13284.
    1. DiNapoli J.M., Nayak B., Yang L., Finneyfrock B.W., Cook A., Andersen H., Torres-Velez F., Murphy B.R., Samal S.K., Collins P.L., Bukreyev A. Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of h5n1 highly pathogenic avian influenza virus protect against virus challenge in monkeys. J. Virol. 2010;84:1489–1503.
    1. DiNapoli J.M., Yang L., Samal S.K., Murphy B.R., Collins P.L., Bukreyev A. Respiratory tract immunization of non-human primates with a newcastle disease virus-vectored vaccine candidate against ebola virus elicits a neutralizing antibody response. Vaccine. 2010;29:17–25.
    1. Jasenosky L.D., Neumann G., Lukashevich I., Kawaoka Y. Ebola virus vp40-induced particle formation and association with the lipid bilayer. J. Virol. 2001;75:5205–5214.
    1. Licata J.M., Johnson R.F., Han Z., Harty R.N. Contribution of ebola virus glycoprotein, nucleoprotein, and vp24 to budding of vp40 virus-like particles. J. Virol. 2004;78:7344–7351.
    1. Warfield K.L., Swenson D.L., Olinger G.G., Kalina W.V., Aman M.J., Bavari S. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal ebola virus challenge. J. Infect. Dis. 2007;196:S430–S437.
    1. Swenson D.L., Warfield K.L., Larsen T., Alves D.A., Coberley S.S., Bavari S. Monovalent virus-like particle vaccine protects guinea pigs and nonhuman primates against infection with multiple marburg viruses. Expert Rev. Vaccines. 2008;7:417–429.
    1. Warfield K.L., Posten N.A., Swenson D.L., Olinger G.G., Esposito D., Gillette W.K., Hopkins R.F., Costantino J., Panchal R.G., Hartley J.L., et al. Filovirus-like particles produced in insect cells: Immunogenicity and protection in rodents. J. Infect. Dis. 2007;196:S421–S429.
    1. Jasenosky L.D., Neumann G., Lukashevich I., Kawaoka Y. Ebola virus vp40-induced particle formation and association with the lipid bilayer. J. Virol. 2001;75:5205–5214.
    1. Noda T., Sagara H., Suzuki E., Takada A., Kida H., Kawaoka Y. Ebola virus vp40 drives the formation of virus-like filamentous particles along with gp. J. Virol. 2002;76:4855–4865.
    1. Bertolotti-Ciarlet A., Ciarlet M., Crawford S.E., Conner M.E., Estes M.K. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine. 2003;21:3885–3900. doi: 10.1016/S0264-410X(03)00308-6.
    1. Li T.C., Yamakawa Y., Suzuki K., Tatsumi M., Razak M.A., Uchida T., Takeda N., Miyamura T. Expression and self-assembly of empty virus-like particles of hepatitis e virus. J. Virol. 1997;71:7207–7213.
    1. Park J.S., Oh Y.K., Kang M.J., Kim C.K. Enhanced mucosal and systemic immune responses following intravaginal immunization with human papillomavirus 16 l1 virus-like particle vaccine in thermosensitive mucoadhesive delivery systems. J. Med. Virol. 2003;70:633–641.
    1. Yao Q., Vuong V., Li M., Compans R.W. Intranasal immunization with siv virus-like particles (vlps) elicits systemic and mucosal immunity. Vaccine. 2002;20:2537–2545.
    1. Sun Y., Carrion R., Jr., Ye L., Wen Z., Ro Y.T., Brasky K., Ticer A.E., Schwegler E.E., Patterson J.L., Compans R.W., et al. Protection against lethal challenge by ebola virus-like particles produced in insect cells. Virology. 2009;383:12–21.
    1. Ye L., Lin J., Sun Y., Bennouna S., Lo M., Wu Q., Bu Z., Pulendran B., Compans R.W., Yang C. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology. 2006;351:260–270.
    1. Chen H., Xu X., Jones I.M. Immunogenicity of the outer domain of a hiv-1 clade c gp120. Retrovirology. 2007;4
    1. Guyre P.M., Graziano R.F., Goldstein J., Wallace P.K., Morganelli P.M., Wardwell K., Howell A.L. Increased potency of fc-receptor-targeted antigens. Cancer Immunol. Immunother. 1997;45:146–148.
    1. Zhang M.Y., Wang Y., Mankowski M.K., Ptak R.G., Dimitrov D.S. Cross-reactive hiv-1-neutralizing activity of serum igg from a rabbit immunized with gp41 fused to igg1 fc: Possible role of the prolonged half-life of the immunogen. Vaccine. 2009;27:857–863.
    1. Konduru K., Bradfute S.B., Jacques J., Manangeeswaran M., Nakamura S., Morshed S., Wood S.C., Bavari S., Kaplan G.G. Ebola virus glycoprotein fc fusion protein confers protection against lethal challenge in vaccinated mice. Vaccine. 2011;29:2968–2977.
    1. Giddings G. Transgenic plants as protein factories. Curr. Opin. Biotechnol. 2001;12:450–454.
    1. Hood E.E., Woodard S.L., Horn M.E. Monoclonal antibody manufacturing in transgenic plants--myths and realities. Curr. Opin. Biotechnol. 2002;13:630–635.
    1. Huang Z., Phoolcharoen W., Lai H., Piensook K., Cardineau G., Zeitlin L., Whaley K.J., Arntzen C.J., Mason H.S., Chen Q. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol. Bioeng. 2010;106:9–17.
    1. Vitale A., Pedrazzini E. Recombinant pharmaceuticals from plants: The plant endomembrane system as bioreactor. Mol. Interv. 2005;5:216–225.
    1. Phoolcharoen W., Bhoo S.H., Lai H., Ma J., Arntzen C.J., Chen Q., Mason H.S. Expression of an immunogenic ebola immune complex in nicotiana benthamiana. Plant Biotechnol. J. 2011;9:807–816.
    1. Tsuda Y., Caposio P., Parkins C.J., Botto S., Messaoudi I., Cicin-Sain L., Feldmann H., Jarvis M.A. A replicating cytomegalovirus-based vaccine encoding a single ebola virus nucleoprotein ctl epitope confers protection against ebola virus. PLoS Negl. Trop. Dis. 2011;5:e1275.
    1. Hansen S.G., Vieville C., Whizin N., Coyne-Johnson L., Siess D.C., Drummond D.D., Legasse A.W., Axthelm M.K., Oswald K., Trubey C.M., et al. Effector memory t cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 2009;15:293–299.
    1. Sylwester A.W., Mitchell B.L., Edgar J.B., Taormina C., Pelte C., Ruchti F., Sleath P.R., Grabstein K.H., Hosken N.A., Kern F., et al. Broadly targeted human cytomegalovirus-specific cd4+ and cd8+ t cells dominate the memory compartments of exposed subjects. J. Exp. Med. 2005;202:673–685. doi: 10.1084/jem.20050882.
    1. Jarvis M.A., Nelson J.A. Human cytomegalovirus tropism for endothelial cells: Not all endothelial cells are created equal. J. Virol. 2007;81:2095–2101.
    1. Hansen S.G., Ford J.C., Lewis M.S., Ventura A.B., Hughes C.M., Coyne-Johnson L., Whizin N., Oswald K., Shoemaker R., Swanson T., et al. Profound early control of highly pathogenic siv by an effector memory t-cell vaccine. Nature. 2011;473:523–527.
    1. Bukreyev A., Marzi A., Feldmann F., Zhang L., Yang L., Ward J.M., Dorward D.W., Pickles R.J., Murphy B.R., Feldmann H., et al. Chimeric human parainfluenza virus bearing the ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against ebola virus challenge. Virology. 2009;383:348–361. doi: 10.1016/j.virol.2008.09.030.
    1. Mammen E.F. Disseminated intravascular coagulation (dic) Clin. Lab. Sci. 2000;13:239–245.
    1. Taylor F.B., Jr., Chang A., Ruf W., Morrissey J.H., Hinshaw L., Catlett R., Blick K., Edgington T.S., Lethal E. Coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ. Shock. 1991;33:127–134.
    1. Geisbert T.W., Hensley L.E., Jahrling P.B., Larsen T., Geisbert J.B., Paragas J., Young H.A., Fredeking T.M., Rote W.E., Vlasuk G.P. Treatment of ebola virus infection with a recombinant inhibitor of factor viia/tissue factor: A study in rhesus monkeys. Lancet. 2003;362:1953–1958.
    1. Lee A., Agnelli G., Buller H., Ginsberg J., Heit J., Rote W., Vlasuk G., Costantini L., Julian J., Comp P., et al. Dose-response study of recombinant factor viia/tissue factor inhibitor recombinant nematode anticoagulant protein c2 in prevention of postoperative venous thromboembolism in patients undergoing total knee replacement. Circulation. 2001;104:74–78. doi: 10.1161/hc2601.091386.
    1. Moons A.H., Peters R.J., Bijsterveld N.R., Piek J.J., Prins M.H., Vlasuk G.P., Rote W.E., Buller H.R. Recombinant nematode anticoagulant protein c2, an inhibitor of the tissue factor/factor viia complex, in patients undergoing elective coronary angioplasty. J. Am. Coll. Cardiol. 2003;41:2147–2153.
    1. Geisbert T.W., Daddario-DiCaprio K.M., Geisbert J.B., Young H.A., Formenty P., Fritz E.A., Larsen T., Hensley L.E. Marburg virus angola infection of rhesus macaques: Pathogenesis and treatment with recombinant nematode anticoagulant protein c2. J. Infect. Dis. 2007;196:S372–S381.
    1. Lebleu B., Moulton H.M., Abes R., Ivanova G.D., Abes S., Stein D.A., Iversen P.L., Arzumanov A.A., Gait M.J. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv. Drug Deliv. Rev. 2008;60:517–529.
    1. Iversen P.L. Phosphorodiamidate morpholino oligomers: Favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 2001;3:235–238.
    1. Summerton J., Weller D. Morpholino antisense oligomers: Design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997;7:187–195. doi: 10.1089/oli.1.1997.7.187.
    1. Youngblood D.S., Hatlevig S.A., Hassinger J.N., Iversen P.L., Moulton H.M. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Bioconjug. Chem. 2007;18:50–60.
    1. Kinney R.M., Huang C.Y., Rose B.C., Kroeker A.D., Dreher T.W., Iversen P.L., Stein D.A. Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J. Virol. 2005;79:5116–5128.
    1. Neuman B.W., Stein D.A., Kroeker A.D., Churchill M.J., Kim A.M., Kuhn P., Dawson P., Moulton H.M., Bestwick R.K., Iversen P.L., et al. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 2005;79:9665–9676.
    1. Enterlein S., Warfield K.L., Swenson D.L., Stein D.A., Smith J.L., Gamble C.S., Kroeker A.D., Iversen P.L., Bavari S., Muhlberger E. Vp35 knockdown inhibits ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother. 2006;50:984–993.
    1. Swenson D.L., Warfield K.L., Warren T.K., Lovejoy C., Hassinger J.N., Ruthel G., Blouch R.E., Moulton H.M., Weller D.D., Iversen P.L., et al. Chemical modifications of antisense morpholino oligomers enhance their efficacy against ebola virus infection. Antimicrob. Agents Chemother. 2009;53:2089–2099.
    1. Warren T.K., Warfield K.L., Wells J., Swenson D.L., Donner K.S., van Tongeren S.A., Garza N.L., Dong L., Mourich D.V., Crumley S., et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat. Med. 2010;16:991–994.
    1. Bray M., Mahanty S. Ebola hemorrhagic fever and septic shock. J. Infect. Dis. 2003;188:1613–1617.
    1. Hensley L.E., Stevens E.L., Yan S.B., Geisbert J.B., Macias W.L., Larsen T., Daddario-DiCaprio K.M., Cassell G.H., Jahrling P.B., Geisbert T.W. Recombinant human activated protein c for the postexposure treatment of ebola hemorrhagic fever. J. Infect. Dis. 2007;196:S390–S399.
    1. Schnittler H.J., Feldmann H. Marburg and ebola hemorrhagic fevers: Does the primary course of infection depend on the accessibility of organ-specific macrophages? Clin. Infect. Dis. 1998;27:404–406. doi: 10.1086/517704.
    1. Macias W.L., Nelson D.R. Severe protein c deficiency predicts early death in severe sepsis. Crit. Care Med. 2004;32:S223–S228.
    1. Shorr A.F., Bernard G.R., Dhainaut J.F., Russell J.R., Macias W.L., Nelson D.R., Sundin D.P. Protein c concentrations in severe sepsis: An early directional change in plasma levels predicts outcome. Crit. Care. 2006;10:R92.
    1. Bernard G.R., Vincent J.L., Laterre P.F., LaRosa S.P., Dhainaut J.F., Lopez-Rodriguez A., Steingrub J.S., Garber G.E., Helterbrand J.D., Ely E.W., et al. Efficacy and safety of recombinant human activated protein c for severe sepsis. N. Engl. J. Med. 2001;344:699–709. doi: 10.1056/NEJM200103083441001.
    1. Geisbert T.W., Young H.A., Jahrling P.B., Davis K.J., Kagan E., Hensley L.E. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: Overexpression of tissue factor in primate monocytes/macrophages is a key event. J. Infect. Dis. 2003;188:1618–1629.
    1. Colbere-Garapin F., Blondel B., Saulnier A., Pelletier I., Labadie K. Silencing viruses by rna interference. Microbes Infect. 2005;7:767–775.
    1. Tan F.L., Yin J.Q. Rnai, a new therapeutic strategy against viral infection. Cell Res. 2004;14:460–466.
    1. Sanchez A.B., Perez M., Cornu T., de la Torre J.C. Rna interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 2005;79:11071–11081.
    1. Wu C.J., Huang H.W., Liu C.Y., Hong C.F., Chan Y.L. Inhibition of sars-cov replication by sirna. Antiviral. Res. 2005;65:45–48.
    1. Fowler T., Bamberg S., Moller P., Klenk H.D., Meyer T.F., Becker S., Rudel T. Inhibition of marburg virus protein expression and viral release by rna interference. J. Gen. Virol. 2005;86:1181–1188.
    1. Wu S.Y., McMillan N.A. Lipidic systems for in vivo sirna delivery. AAPS J. 2009;11:639–652. doi: 10.1208/s12248-009-9140-1.
    1. Geisbert T.W., Hensley L.E., Kagan E., Yu E.Z., Geisbert J.B., Daddario-DiCaprio K., Fritz E.A., Jahrling P.B., McClintock K., Phelps J.R., et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by rna interference. J. Infect. Dis. 2006;193:1650–1657. doi: 10.1086/504267.
    1. Geisbert T.W., Lee A.C., Robbins M., Geisbert J.B., Honko A.N., Sood V., Johnson J.C., de Jong S., Tavakoli I., Judge A., et al. Postexposure protection of non-human primates against a lethal ebola virus challenge with rna interference: A proof-of-concept study. Lancet. 2010;375:1896–1905.
    1. Morrissey D.V., Lockridge J.A., Shaw L., Blanchard K., Jensen K., Breen W., Hartsough K., Machemer L., Radka S., Jadhav V., et al. Potent and persistent in vivo anti-hbv activity of chemically modified sirnas. Nat. Biotechnol. 2005;23:1002–1007.
    1. Michelow I.C., Lear C., Scully C., Prugar L.I., Longley C.B., Yantosca L.M., Ji X., Karpel M., Brudner M., Takahashi K., et al. High-dose mannose-binding lectin therapy for ebola virus infection. J. Infect. Dis. 2011;203:175–179. doi: 10.1093/infdis/jiq025.
    1. Petersen K.A., Matthiesen F., Agger T., Kongerslev L., Thiel S., Cornelissen K., Axelsen M. Phase i safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J. Clin. Immunol. 2006;26:465–475. doi: 10.1007/s10875-006-9037-z.
    1. Ji X., Olinger G.G., Aris S., Chen Y., Gewurz H., Spear G.T. Mannose-binding lectin binds to ebola and marburg envelope glycoproteins, resulting in blocking of virus interaction with dc-sign and complement-mediated virus neutralization. J. Gen. Virol. 2005;86:2535–2542.
    1. Bugni T.S., Richards B., Bhoite L., Cimbora D., Harper M.K., Ireland C.M. Marine natural product libraries for high-throughput screening and rapid drug discovery. J. Nat. Prod. 2008;71:1095–1098.
    1. Li X., Yang J., He X., Yang Z., Ding Y., Zhao P., Liu Z., Shao H., Li Z., Zhang Y., Si S. Identification of upregulators of bmp2 expression via high-throughput screening of a synthetic and natural compound library. J. Biomol. Screen. 2009;14:1251–1256.
    1. Xie Q., Matsunaga S., Wen Z., Niimi S., Kumano M., Sakakibara Y., Machida S. In vitro system for high-throughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. J. Pept. Sci. 2006;12:643–652. doi: 10.1002/psc.774.
    1. Shum D., Smith J.L., Hirsch A.J., Bhinder B., Radu C., Stein D.A., Nelson J.A., Fruh K., Djaballah H. High-content assay to identify inhibitors of dengue virus infection. Assay Drug Dev. Technol. 2010;8:553–570.
    1. Payne D.J., Gwynn M.N., Holmes D.J., Pompliano D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007;6:29–40.
    1. Warren T.K., Warfield K.L., Wells J., Enterlein S., Smith M., Ruthel G., Yunus A.S., Kinch M.S., Goldblatt M., Aman M.J., et al. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob. Agents Chemother. 2010;54:2152–2159.
    1. Aman M.J., Kinch M.S., Warfield K., Warren T., Yunus A., Enterlein S., Stavale E., Wang P., Chang S., Tang Q., et al. Development of a broad-spectrum antiviral with activity against ebola virus. Antiviral. Res. 2009;83:245–251. doi: 10.1016/j.antiviral.2009.06.001.
    1. Panchal R.G., Kota K.P., Spurgers K.B., Ruthel G., Tran J.P., Boltz R.C., Bavari S. Development of high-content imaging assays for lethal viral pathogens. J. Biomol. Screen. 2010;15:755–765.
    1. Panchal R.G., Reid S.P., Tran J.P., Bergeron A.A., Wells J., Kota K.P., Aman J., Bavari S. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral. Res. 2012;93:23–29.
    1. Chang E.L., Olinger G.G., Hensley L.E., Lear C.M., Scully C.E., Mankowski M.K., Ptak R.G., Thach D.C., Knight D.A. Hexamminecobalt (iii) chloride as a broad-spectrum antiviral complex. J. Antivir. Antiretrovir. 2011;3:020–027.
    1. Carstea E.D., Morris J.A., Coleman K.G., Loftus S.K., Zhang D., Cummings C., Gu J., Rosenfeld M.A., Pavan W.J., Krizman D.B., et al. Niemann-pick c1 disease gene: Homology to mediators of cholesterol homeostasis. Science. 1997;277:228–231. doi: 10.1126/science.277.5323.228.
    1. Goldman S.D., Krise J.P. Niemann-pick c1 functions independently of niemann-pick c2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo. J. Biol. Chem. 2010;285:4983–4994.
    1. Lloyd-Evans E., Morgan A.J., He X., Smith D.A., Elliot-Smith E., Sillence D.J., Churchill G.C., Schuchman E.H., Galione A., Platt F.M. Niemann-pick disease type c1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 2008;14:1247–1255.
    1. Tang Y., Leao I.C., Coleman E.M., Broughton R.S., Hildreth J.E. Deficiency of niemann-pick type c-1 protein impairs release of human immunodeficiency virus type 1 and results in gag accumulation in late endosomal/lysosomal compartments. J. Virol. 2009;83:7982–7995.
    1. Cenedella R.J. Cholesterol synthesis inhibitor u18666a and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids. 2009;44:477–487.
    1. Smith D.R., McCarthy S., Chrovian A., Olinger G., Stossel A., Geisbert T.W., Hensley L.E., Connor J.H. Inhibition of heat-shock protein 90 reduces ebola virus replication. Antivir. Res. 2010;87:187–194.
    1. Pratt W.B., Toft D.O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 2003;228:111–133.
    1. Goetz M.P., Toft D., Reid J., Ames M., Stensgard B., Safgren S., Adjei A.A., Sloan J., Atherton P., Vasile V., et al. Phase i trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. 2005;23:1078–1087.
    1. Whitesell L., Lindquist S.L. Hsp90 and the chaperoning of cancer. Nat. Rev. Cancer. 2005;5:761–772.
    1. Connor J.H., McKenzie M.O., Parks G.D., Lyles D.S. Antiviral activity and rna polymerase degradation following hsp90 inhibition in a range of negative strand viruses. Virology. 2007;362:109–119.
    1. Geller R., Vignuzzi M., Andino R., Frydman J. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 2007;21:195–205.
    1. Hung J.J., Chung C.S., Chang W. Molecular chaperone hsp90 is important for vaccinia virus growth in cells. J. Virol. 2002;76:1379–1390.
    1. Ujino S., Yamaguchi S., Shimotohno K., Takaku H. Heat-shock protein 90 is essential for stabilization of the hepatitis c virus nonstructural protein ns3. J. Biol. Chem. 2009;284:6841–6846.
    1. Radoshitzky S.R., Warfield K.L., Chi X., Dong L., Kota K., Bradfute S.B., Gearhart J.D., Retterer C., Kranzusch P.J., Misasi J.N., et al. Ebolavirus delta-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry. J. Virol. 2011;85:8502–8513.
    1. Wahl-Jensen V.M., Afanasieva T.A., Seebach J., Stroher U., Feldmann H., Schnittler H.J. Effects of ebola virus glycoproteins on endothelial cell activation and barrier function. J. Virol. 2005;79:10442–10450.
    1. Ujike M., Nishikawa H., Otaka A., Yamamoto N., Matsuoka M., Kodama E., Fujii N., Taguchi F. Heptad repeat-derived peptides block protease-mediated direct entry from the cell surface of severe acute respiratory syndrome coronavirus but not entry via the endosomal pathway. J. Virol. 2008;82:588–592.
    1. Wild C.T., Shugars D.C., Greenwell T.K., McDanal C.B., Matthews T.J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA. 1994;91:9770–9774.
    1. Chan D.C., Chutkowski C.T., Kim P.S. Evidence that a prominent cavity in the coiled coil of hiv type 1 gp41 is an attractive drug target. Proc. Natl. Acad. Sci. USA. 1998;95:15613–15617.
    1. Furuta R.A., Wild C.T., Weng Y., Weiss C.D. Capture of an early fusion-active conformation of hiv-1 gp41. Nat. Struct. Biol. 1998;5:276–279.
    1. Miller E.H., Harrison J.S., Radoshitzky S.R., Higgins C.D., Chi X., Dong L., Kuhn J.H., Bavari S., Lai J.R., Chandran K. Inhibition of ebola virus entry by a c-peptide targeted to endosomes. J. Biol. Chem. 2011;286:15854–15861.
    1. Gump J.M., Dowdy S.F. Tat transduction: The molecular mechanism and therapeutic prospects. Trends Mol. Med. 2007;13:443–448.
    1. Richard J.P., Melikov K., Brooks H., Prevot P., Lebleu B., Chernomordik L.V. Cellular uptake of unconjugated tat peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005;280:15300–15306.
    1. Guo H., Pan X., Mao R., Zhang X., Wang L., Lu X., Chang J., Guo J.T., Passic S., Krebs F.C., et al. Alkylated porphyrins have broad antiviral activity against hepadnaviruses, flaviviruses, filoviruses, and arenaviruse. Antimicrob. Agents Chemother. 2011;55:478–486. doi: 10.1128/AAC.00989-10.
    1. Basu A., Li B., Mills D.M., Panchal R.G., Cardinale S.C., Butler M.M., Peet N.P., Majgier-Baranowska H., Williams J.D., Patel I., et al. Identification of a small-molecule entry inhibitor for filoviruses. J. Virol. 2011;85:3106–3119.
    1. Wolf M.C., Freiberg A.N., Zhang T., Akyol-Ataman Z., Grock A., Hong P.W., Li J., Watson N.F., Fang A.Q., Aguilar H.C., et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc. Natl. Acad. Sci. USA. 2010;107:3157–3162.

Source: PubMed

3
購読する