Neutrophil-to-lymphocyte ratio, calprotectin and YKL-40 in patients with chronic obstructive pulmonary disease: correlations and 5-year mortality - a cohort study

Allan Klitgaard Sørensen, Dennis Back Holmgaard, Lone Hagens Mygind, Julia Johansen, Court Pedersen, Allan Klitgaard Sørensen, Dennis Back Holmgaard, Lone Hagens Mygind, Julia Johansen, Court Pedersen

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and progressive decline in pulmonary function. Neutrophil-to-lymphocyte ratio (NLR), YKL-40 and calprotectin are biomarkers of inflammation and predict mortality in patients with different inflammatory diseases. We aimed to investigate the correlation between levels of these three biomarkers and neutrophil granulocyte and lymphocyte count in patients with moderate to very severe COPD stratified by use of systemic glucocorticoids. Furthermore, we studied the ability of these biomarkers to predict all-cause mortality.

Methods: 386 patients with moderate to very severe COPD were followed prospectively for 10 years. Patients were divided into two groups according to systemic glucocorticoid use at baseline. Correlations between biomarkers were assessed by Spearman's Rho, and mortality was evaluated in uni- and multivariate Cox regression analyses with hazard ratios (HR) and 95% confidence intervals (CI).

Results: Plasma calprotectin was positively correlated with neutrophil granulocyte count and NLR. No significant association was found between plasma YKL-40 and the cellular biomarkers, irrespective of glucocorticoid treatment. In the group not treated with systemic glucocorticoids, plasma calprotectin [HR 1.002 (95% CI 1.000 - 1.004)], NLR [HR 1.090 (1.036 - 1.148)] and lymphocyte count [HR 0.667 (0.522 - 0.851)] were significantly associated with higher mortality. In the group treated with systemic glucocorticoids, higher plasma YKL-40 was significantly associated with mortality in univariate Cox regression analysis [HR 1.006 (1.003 - 1.008)].

Conclusions: Calprotectin was related to neutrophil granulocyte count and NLR in patients with moderate to very severe COPD in stable phase and not in treatment with systemic glucocorticoids. Lymphopenia, higher plasma calprotectin and higher NLR were independent predictors of increased all-cause mortality in this group. Our data also suggests that treatment with systemic glucocorticoids has a significant impact on the ability of inflammatory biomarkers to predict all-cause mortality.

Trial registration: ClinicalTrials.gov NCT00132860.

Keywords: COPD; Calprotectin; Glucocorticoids; Lymphopenia; Mortality; Neutrophil-to-lymphocyte ratio; Prognosis; YKL-40.

Figures

Figure 1
Figure 1
Relationship between calprotectin and neutrophil granulocyte count, lymphocyte count* and NLR stratified by glucocorticoid use. Spearman’s rank correlation coefficient (Rho) and corresponding p-values are displayed in the top right corner of each plot. *An outlier of lymphocytes = 30 × 109/L was removed from the graph in the non-glucocorticoid group for aesthetic purposes.
Figure 2
Figure 2
Relationship between YKL-40 and neutrophil granulocyte count, lymphocyte count* and NLR stratified by glucocorticoid use. Spearman’s rank correlation coefficient (Rho) and corresponding p-values are displayed in the top right corner of each plot. *An outlier of lymphocytes = 30 × 109/L was removed from the graph in the non-glucocorticoid group for aesthetic purposes.
Figure 3
Figure 3
Kaplan-Meier survival estimates for each biomarker in the group not treated with systemic glucocorticoids. Calprotectin dichotomized at median (135.5 ng/mL). NLR dichotomized at median (2.83). Neutrophil count dichotomized at upper limit of reference value (7 × 109/L). Lymphocyte count dichotomized at lower limit of reference value (1.3 × 109/L). YKL-40 dichotomized at 75th age corrected percentile. NLR: Neutrophil-to-lymphocyte ratio.
Figure 4
Figure 4
Kaplan-Meier survival estimates for each biomarker in the group treated with systemic glucocorticoids. Calprotectin dichotomized at median of non-glucocorticoid group (135.5 ng/mL). NLR dichotomized at median of non-glucocorticoid group (2.83). Neutrophil granulocyte count dichotomized at upper limit of reference value (7 × 109/L). Lymphocyte count dichotomized at lower limit of reference value (1.3 × 109/L). YKL-40 dichotomized at 75th age corrected percentile. NLR: Neutrophil-to-lymphocyte ratio.

References

    1. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. European Respiratory J. 2004;23(6):932–46. doi: 10.1183/09031936.04.00014304.
    1. Sinden NJ, Stockley RA. Systemic inflammation and comorbidity in COPD: a result of ‘overspill’ of inflammatory mediators from the lungs? Review Evidence Thorax. 2010;65(10):930–6. doi: 10.1136/thx.2009.130260.
    1. Casanova C, de Torres JP, Aguirre-Jaime A, Pinto-Plata V, Marin JM, Cordoba E, et al. The progression of chronic obstructive pulmonary disease is heterogeneous: the experience of the BODE cohort. Am J Respir Crit Care Med. 2011;184(9):1015–21. doi: 10.1164/rccm.201105-0831OC.
    1. Celli BR, Cote CG, Marin JM, Casanova C, Montes De Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–12. doi: 10.1056/NEJMoa021322.
    1. Agusti A, Edwards LD, Rennard SI, MacNee W, Tal-Singer R, Miller BE, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7(5):e37483. doi: 10.1371/journal.pone.0037483.
    1. Celli BR, Locantore N, Yates J, Tal-Singer R, Miller BE, Bakke P, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1065–72. doi: 10.1164/rccm.201110-1792OC.
    1. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53. doi: 10.1056/NEJMoa032158.
    1. Ergelen M, Uyarel H, Altay S, Kul S, Ayhan E, Isik T et al. Predictive value of elevated neutrophil to lymphocyte ratio in patients undergoing primary angioplasty for ST-segment elevation myocardial infarction. Clin Appl Thromb Hemost. 2013. doi:10.1177/1076029612473516.
    1. Gul M, Uyarel H, Ergelen M, Ugur M, Isik T, Ayhan E et al. Predictive value of neutrophil to lymphocyte ratio in clinical outcomes of non-ST elevation myocardial infarction and unstable angina pectoris: A 3-year follow-up. Clin Appl Thromb Hemost. 2012. doi:10.1177/1076029612465669
    1. Cedres S, Torrejon D, Martinez A, Martinez P, Navarro A, Zamora E, et al. Neutrophil to lymphocyte ratio (NLR) as an indicator of poor prognosis in stage IV non-small cell lung cancer. Clinical Translational Oncol. 2012;14(11):864–9. doi: 10.1007/s12094-012-0872-5.
    1. Li MX, Liu XM, Zhang XF, Zhang JF, Wang WL, Zhu Y, et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. Int J Cancer . 2014;134(10):2403–13. doi: 10.1002/ijc.28536.
    1. Sen BB, Rifaioglu EN, Ekiz O, Inan MU, Sen T, Sen N. Neutrophil to lymphocyte ratio as a measure of systemic inflammation in psoriasis. Cutan Ocul Toxicol. 2013. doi:10.3109/15569527.2013.834498
    1. Gunay E, Sarinc Ulasli S, Akar O, Ahsen A, Gunay S, Koyuncu T et al. Neutrophil-to-lymphocyte ratio in chronic obstructive pulmonary disease: a retrospective study. Inflammation. 2013. doi:10.1007/s10753-013-9749-1.
    1. Voganatsi A, Panyutich A, Miyasaki KT, Murthy RK. Mechanism of extracellular release of human neutrophil calprotectin complex. J Leukoc Biol. 2001;70(1):130–4.
    1. Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, Are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997;272(14):9496–502. doi: 10.1074/jbc.272.14.9496.
    1. Edgeworth J, Gorman M, Bennett R, Freemont P, Hogg N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biological Chem. 1991;266(12):7706–13.
    1. Hsu K, Champaiboon C, Guenther BD, Sorenson BS, Khammanivong A, Ross KF et al. ANTI-INFECTIVE PROTECTIVE PROPERTIES OF S100 CALGRANULINS. Anti-inflammatory & anti-allergy agents in medicinal chemistry. 2009;8(4):290–305.
    1. Carroccio A, Rocco P, Rabitti PG, Di Prima L, Forte GB, Cefalu AB, et al. Plasma calprotectin levels in patients suffering from acute pancreatitis. Dig Dis Sci. 2006;51(10):1749–53. doi: 10.1007/s10620-006-9078-4.
    1. Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cystic Fibrosis. 2010;9(3):193–8. doi: 10.1016/j.jcf.2010.01.005.
    1. Meuwis MA, Vernier-Massouille G, Grimaud JC, Bouhnik Y, Laharie D, Piver E, et al. Serum calprotectin as a biomarker for Crohn’s disease. J Crohn’s Colitis. 2013;7(12):e678–83. doi: 10.1016/j.crohns.2013.06.008.
    1. Andres Cerezo L, Mann H, Pecha O, Plestilova L, Pavelka K, Vencovsky J, et al. Decreases in serum levels of S100A8/9 (calprotectin) correlate with improvements in total swollen joint count in patients with recent-onset rheumatoid arthritis. Arthritis ResTherapy. 2011;13(4):R122.
    1. Cury DB, Mizsputen SJ, Versolato C, Miiji LO, Pereira E, Delboni MA, et al. Serum calprotectin levels correlate with biochemical and histological markers of disease activity in TNBS colitis. Cell Immunol. 2013;282(1):66–70. doi: 10.1016/j.cellimm.2013.04.004.
    1. Holmgaard DB, Mygind LH, Titlestad I, Madsen H, Pedersen SS, Mortensen OH, et al. Calprotectin–a marker of mortality in COPD? Results from a prospective cohort study. COPD. 2013;10(5):581–7. doi: 10.3109/15412555.2013.781580.
    1. Harutyunyan M, Christiansen M, Johansen JS, Kober L, Torp-Petersen C, Kastrup J. The inflammatory biomarker YKL-40 as a new prognostic marker for all-cause mortality in patients with heart failure. Immunobiology. 2012;217(6):652–6. doi: 10.1016/j.imbio.2011.11.003.
    1. Kastrup J, Johansen JS, Winkel P, Hansen JF, Hildebrandt P, Jensen GB, et al. High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease. Eur Heart J. 2009;30(9):1066–72. doi: 10.1093/eurheartj/ehp049.
    1. Rathcke CN, Kistorp C, Raymond I, Hildebrandt P, Gustafsson F, Lip GY, et al. Plasma YKL-40 levels are elevated in patients with chronic heart failure. Scandinavian Cardiovasc J. 2010;44(2):92–9. doi: 10.3109/14017430903402218.
    1. Dehn H, Hogdall EV, Johansen JS, Jorgensen M, Price PA, Engelholm SA, et al. Plasma YKL-40, as a prognostic tumor marker in recurrent ovarian cancer. Acta Obstet Gynecol Scand. 2003;82(3):287–93. doi: 10.1034/j.1600-0412.2003.00010.x.
    1. Kazakova M, Batalov A, Deneva T, Mateva N, Kolarov Z, Sarafian V. Relationship between sonographic parameters and YKL-40 levels in rheumatoid arthritis. Rheumatol Int. 2013;33(2):341–6. doi: 10.1007/s00296-012-2387-3.
    1. Johansen JS, Schultz NA, Jensen BV. Plasma YKL-40: a potential new cancer biomarker? Future oncology (London, England). 2009;5(7):1065–82. doi: 10.2217/fon.09.66.
    1. Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43(2):221–5. doi: 10.1006/geno.1997.4778.
    1. Brochner CB, Johansen JS, Larsen LA, Bak M, Mikkelsen HB, Byskov AG, et al. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers. J Histochem Cytochem. 2012;60(3):188–204. doi: 10.1369/0022155411433331.
    1. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250.
    1. Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, et al. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 2012;31(26):3111–23. doi: 10.1038/onc.2011.498.
    1. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Experimental Med. 2009;206(5):1149–66. doi: 10.1084/jem.20081271.
    1. Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J et al. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-kappaB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol (Baltimore, MD: 1950). 2013;190(1):438–46. doi: 10.4049/jimmunol.1201827.
    1. Matsuura H, Hartl D, Kang MJ, Dela Cruz CS, Koller B, Chupp GL, et al. Role of breast regression protein-39 in the pathogenesis of cigarette smoke-induced inflammation and emphysema. Am J Respir Cell Mol Biol. 2011;44(6):777–86. doi: 10.1165/rcmb.2010-0081OC.
    1. He CH, Lee CG, Dela Cruz CS, Lee CM, Zhou Y, Ahangari F, et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor alpha2. Cell Reports. 2013;4(4):830–41. doi: 10.1016/j.celrep.2013.07.032.
    1. Korthagen NM, van Moorsel CH, Barlo NP, Ruven HJ, Kruit A, Heron M, et al. Serum and BALF YKL-40 levels are predictors of survival in idiopathic pulmonary fibrosis. Respir Med. 2011;105(1):106–13. doi: 10.1016/j.rmed.2010.09.012.
    1. Letuve S, Kozhich A, Arouche N, Grandsaigne M, Reed J, Dombret MC, et al. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J Immunol (Baltimore, Md. 2008;181(7):5167–73. doi: 10.4049/jimmunol.181.7.5167.
    1. Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–27. doi: 10.1056/NEJMoa073600.
    1. Holmgaard DB, Mygind LH, Titlestad IL, Madsen H, Pedersen SS, Johansen JS, et al. Plasma YKL-40 and all-cause mortality in patients with chronic obstructive pulmonary disease. BMC Pulmonary Med. 2013;13(1):77. doi: 10.1186/1471-2466-13-77.
    1. Bojesen SE, Johansen JS, Nordestgaard BG. Plasma YKL-40 levels in healthy subjects from the general population. Clin Chim Acta. 2011;412(9–10):709–12. doi:10.1016/j.cca.2011.01.022.
    1. Babyak MA. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med. 2004;66(3):411–21.
    1. Oudijk EJ, Nijhuis EH, Zwank MD, van de Graaf EA, Mager HJ, Coffer PJ, et al. Systemic inflammation in COPD visualised by gene profiling in peripheral blood neutrophils. Thorax. 2005;60(7):538–44. doi: 10.1136/thx.2004.034009.
    1. Yu DT, Clements PJ, Paulus HE, Peter JB, Levy J, Barnett EV. Human lymphocyte subpopulations. Effect of corticosteroids. J Clinical Invest. 1974;53(2):565–71. doi: 10.1172/JCI107591.
    1. Mishler JM, Emerson PM. Development of Neutrophilia by serially increasing doses of dexamethasone. Br J Haematol. 1977;36(2):249–57. doi: 10.1111/j.1365-2141.1977.tb00646.x.
    1. Vestbo J, Rennard S. Chronic obstructive pulmonary disease biomarker(s) for disease activity needed–urgently. Am J Respir Crit Care Med. 2010;182(7):863–4. doi: 10.1164/rccm.201004-0602ED.
    1. de Torres JP, Pinto-Plata V, Casanova C, Mullerova H, Cordoba-Lanus E, Muros de Fuentes M, et al. C-reactive protein levels and survival in patients with moderate to very severe COPD. Chest. 2008;133(6):1336–43. doi: 10.1378/chest.07-2433.
    1. Moberg M, Vestbo J, Martinez G, Lange P, Ringbaek T. Prognostic value of C-reactive protein, leukocytes, and vitamin d in severe chronic obstructive pulmonary disease. TheScientificWorldJOURNAL. 2014;2014:140736. doi: 10.1155/2014/140736.
    1. Dickens JA, Miller BE, Edwards LD, Silverman EK, Lomas DA, Tal-Singer R. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respir Res. 2011;12:146. doi: 10.1186/1465-9921-12-146.
    1. Le Tulzo Y, Pangault C, Gacouin A, Guilloux V, Tribut O, Amiot L, et al. Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock (Augusta, Ga) 2002;18(6):487–94. doi: 10.1097/00024382-200212000-00001.
    1. de Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care. 2010;14(5):R192. doi: 10.1186/cc9309.
    1. Heffernan DS, Monaghan SF, Thakkar RK, Machan JT, Cioffi WG, Ayala A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit Care. 2012;16(1):R12. doi: 10.1186/cc11157.
    1. Bhat T, Teli S, Rijal J, Bhat H, Raza M, Khoueiry G, et al. Neutrophil to lymphocyte ratio and cardiovascular diseases: a review. Expert Rev Cardiovasc Ther. 2013;11(1):55–9. doi: 10.1586/erc.12.159.
    1. Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69(13):5383–91. doi: 10.1158/0008-5472.CAN-08-3845.
    1. Heimann TM, Bolnick K, Aufses AH., Jr Prognostic significance of severe preoperative lymphopenia in patients with Crohn’s disease. Ann Surg. 1986;203(2):132–5. doi: 10.1097/00000658-198602000-00004.
    1. Ayala A, Herdon CD, Lehman DL, Ayala CA, Chaudry IH. Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators. Blood. 1996;87(10):4261–75.
    1. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27(7):1230–51. doi: 10.1097/00003246-199907000-00002.
    1. McNerlan SE, Alexander HD, Rea IM. Age-related reference intervals for lymphocyte subsets in whole blood of healthy individuals. Scand J Clin Lab Invest. 1999;59(2):89–92. doi: 10.1080/00365519950185805.
    1. Fraker PJ, Lill-Elghanian DA. The many roles of apoptosis in immunity as modified by aging and nutritional status. J Nutrition, Health Aging. 2004;8(1):56–63.
    1. Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):1856–61. doi: 10.1164/ajrccm.160.6.9902115.
    1. Gebhardt C, Breitenbach U, Tuckermann JP, Dittrich BT, Richter KH, Angel P. Calgranulins S100A8 and S100A9 are negatively regulated by glucocorticoids in a c-Fos-dependent manner and overexpressed throughout skin carcinogenesis. Oncogene. 2002;21(27):4266–76. doi: 10.1038/sj.onc.1205521.
    1. Johansen JS, Stoltenberg M, Hansen M, Florescu A, Horslev-Petersen K, Lorenzen I, et al. Serum YKL-40 concentrations in patients with rheumatoid arthritis: relation to disease activity. Rheumatol (Oxford, England) 1999;38(7):618–26. doi: 10.1093/rheumatology/38.7.618.
    1. Shao R, Francescone R, Ngernyuang N, Bentley B, Taylor SL, Moral L, et al. Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma. Carcinogenesis. 2014;35(2):373–82. doi: 10.1093/carcin/bgt380.
    1. Man SF, Connett JE, Anthonisen NR, Wise RA, Tashkin DP, Sin DD. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax. 2006;61(10):849–53. doi: 10.1136/thx.2006.059808.
    1. Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(3):250–5. doi: 10.1164/rccm.200605-713OC.
    1. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis, II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503–10. doi: 10.1016/0895-4356(95)00048-8.

Source: PubMed

3
購読する