Non-invasive Brain Stimulation in the Treatment of Post-stroke and Neurodegenerative Aphasia: Parallels, Differences, and Lessons Learned

Catherine Norise, Roy H Hamilton, Catherine Norise, Roy H Hamilton

Abstract

Numerous studies over the span of more than a decade have shown that non-invasive brain stimulation (NIBS) techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can facilitate language recovery for patients who have suffered from aphasia due to stroke. While stroke is the most common etiology of aphasia, neurodegenerative causes of language impairment-collectively termed primary progressive aphasia (PPA)-are increasingly being recognized as important clinical phenotypes in dementia. Very limited data now suggest that (NIBS) may have some benefit in treating PPAs. However, before applying the same approaches to patients with PPA as have previously been pursued in patients with post-stroke aphasia, it will be important for investigators to consider key similarities and differences between these aphasia etiologies that is likely to inform successful approaches to stimulation. While both post-stroke aphasia and the PPAs have clear overlaps in their clinical phenomenology, the mechanisms of injury and theorized neuroplastic changes associated with the two etiologies are notably different. Importantly, theories of plasticity in post-stroke aphasia are largely predicated on the notion that regions of the brain that had previously been uninvolved in language processing may take on new compensatory roles. PPAs, however, are characterized by slow distributed degeneration of cellular units within the language system; compensatory recruitment of brain regions to subserve language is not currently understood to be an important aspect of the condition. This review will survey differences in the mechanisms of language representation between the two etiologies of aphasia and evaluate properties that may define and limit the success of different neuromodulation approaches for these two disorders.

Keywords: aphasia; neurorehabilitation; primary progressive aphasia; stroke; tDCS.

Figures

Figure 1
Figure 1
(A) Sites and mechanism of stimulation for TMS post-stroke aphasia (Garcia et al., ; Vuksanović et al., 2015). (B) Sites and mechanism of stimulation for tDCS post-stroke aphasia. (C) Sites and mechanism of stimulation for TMS and tDCS for PPA (red, facilitation; black, inhibition).

References

    1. Abel S., Weiller C., Huber W., Willmes K., Specht K. (2015). Therapy-induced brain reorganization patterns in aphasia. Brain 138, 1097–1112. 10.1093/brain/awv022
    1. Abo M., Kakuda W., Watanabe M., Morooka A., Kawakami K., Senoo A. (2012). Effectiveness of low-frequency rTMS and intensive speech therapy in post-stroke patients with aphasia: a pilot study based on evaluation by fMRI in relation to type of aphasia. Eur. Neurol. 68, 199–208. 10.1159/000338773
    1. Alexander M. P. (1997). Aphasia: clinical and anatomical aspects, in Behavioral Neurology and Neuropsychology, eds Feinberg T. E., Farah M. J. (New York, NY: McGraw-Hill; ), 133–49.
    1. Al-Janabi S., Nickels L. A., Sowman P. F., Burianová H., Merrett D. L., Thompson W. F. (2014). Augmenting melodic intonation therapy with non-invasive brain stimulation to treat impaired left-hemisphere function: two case studies. Front. Psychol. 5:37. 10.3389/fpsyg.2014.00037
    1. Ambrus G. G., Al-Moyed H., Chaieb L., Sarp L., Antal A., Paulus W. (2012). The fade-in–short stimulation–fade out approach to sham tDCS–reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimul. 5, 499–504. 10.1016/j.brs.2011.12.001
    1. American Heart Association (2016). Available online at:
    1. Anglade C., Thiel A., Ansaldo A. I. (2014). The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: a critical review of literature. Brain Inj. 28, 138–145. 10.3109/02699052.2013.859734
    1. Antal A., Paulus W. (2013). Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 7:317. 10.3389/fnhum.2013.00317
    1. Ash S., Moore P., Vesely L., Gunawardena D., McMillan C., Anderson C., et al. . (2009). Non-fluent speech in frontotemporal lobar degeneration. J. Neurolinguist. 22, 370–383. 10.1016/j.jneuroling.2008.12.001
    1. Baker J. M., Rorden C., Fridriksson J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41, 1229–1236. 10.1161/STROKEAHA.109.576785
    1. Barwood C. H., Murdoch B. E., Riek S., O'Sullivan J. D., Wong A., Lloyd D., et al. . (2013). Long term language recovery subsequent to low frequency rTMS in chronic non-fluent aphasia. Neuro Rehabil. 32, 915–928. 10.3233/NRE-130915
    1. Barwood C. H., Murdoch B. E., Whelan B. M., Lloyd D., Riek S., O' Sullivan J. D., et al. . (2011). Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. Eur. J. Neurol. 18, 935–943. 10.1111/j.1468-1331.2010.03284.x
    1. Barwood C. H., Murdoch B. E., Whelan B. M., Lloyd D., Riek S., O'Sullivan J. D., et al. . (2012). Improved receptive and expressive language abilities in nonfluent aphasic stroke patients after application of rTMS: an open protocol case series. Brain Stimul. 3, 274–286. 10.1016/j.brs.2011.03.005
    1. Basso A., Marangolo P. (2000). Cognitive rehabilitation: the emperor's new clothes? Neuropsychol. Rehab. 10, 219–229. 10.1080/096020100389138
    1. Belin P., Van Eeckhout P., Zilbovicious M., Remy P., François C., Guillaume S., et al. . (1996). Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology 47, 1504–1511. 10.1212/WNL.47.6.1504
    1. Bernal B., Ardila A. (2009). The role of the arcuate fasciculus in conduction aphasia. Brain 132, 2309–2316. 10.1093/brain/awp206
    1. Binder J. (2015). The Wernicke area: Modern evidence and a reinterpretation. Neurology 85, 2170–2175. 10.1212/WNL.0000000000002219
    1. Bindman L. J., Lippold O. C., Redfearn J. W. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 172, 369–382. 10.1113/jphysiol.1964.sp007425
    1. Blesneag A. V., Slavoaca D. F., Popa L., Stan A. D., Jemna N., Isai Moldovan F., et al. . (2015). Low-frequency rTMS in patients with subacute ischemic stroke: clinical evaluation of short and long-term outcomes and neurophysiological assessment of cortical excitability. J. Med. Life 8, 378–387.
    1. Bliss T. V., Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond). 232, 331–356. 10.1113/jphysiol.1973.sp010273
    1. Boggio P. S., Rigonatti S. P., Ribeiro R. B., Myczkowski M. L., Nitsche M. A., Pascual-Leone A., et al. . (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int. J. Neuropsychopharmacol. 11, 249–254. 10.1017/S1461145707007833
    1. Bolognini N., Pascual-Leone A., Fregni F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehabil. 6:8. 10.1186/1743-0003-6-8
    1. Bridgers S. L., Delaney R. C. (1989). Transcranial magnetic stimulation: an assessment of cognitive and other cerebral effects. Neurology 39:417. 10.1212/WNL.39.3.417
    1. Broca P. (1861). Perte de la parole, ramollissement chronique et destruction partielle du lobe antérieure gauche du cerveau. Bull Soc. Anthrop. Paris 2, 235–238.
    1. Brunoni A. R., Ferrucci R., Bortolomasi M., Vergari M., Tadini L., Boggio P. S., et al. . (2011). Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 96–101. 10.1016/j.pnpbp.2010.09.010
    1. Brunoni A. R., Ferrucci R., Fregni F., Boggio P. S., Priori A. (2012). Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 9–16. 10.1016/j.pnpbp.2012.05.016
    1. Carter A. R., Shulman G. L., Corbetta M. (2012). Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage 62, 2271–2280. 10.1016/j.neuroimage.2012.02.070
    1. Charles D., Olm C., Powers J., Ash S., Irwin D. J., McMillan C. T., et al. . (2014). Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. J. Neurol. Neurosurg. Psychiatry 85, 249–256. 10.1136/jnnp-2013-305749
    1. Cipollari S., Veniero D., Razzano C., Caltagirone C., Koch G., Marangolo P. (2015). Combining TMS-EEG with transcranial direct current stimulation language treatment in aphasia. Expert Rev. Neurother. 15, 833–845. 10.1586/14737175.2015.1049998
    1. Costa V., Giglia G., Brighina F., Indovino S., Fierro B. (2015). Ipsilesional and contralesional regions participate in the improvement of post-stroke aphasia: a transcranial direct current stimulation study. Neurocase 21, 479–488. 10.1080/13554794.2014.927508
    1. Cotelli M., Manenti R., Alberici A., Brambilla M., Cosseddu M., Zanetti O., et al. . (2012). Prefrontal cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur. J. Neurol. 19, 1404–1412. 10.1111/j.1468-1331.2012.03699.x
    1. Cotelli M., Manenti R., Petesi M., Brambilla M., Cosseddu M., Zanetti O., et al. . (2014). Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. J. Alzheimers. Dis. 39, 799–808. 10.3233/JAD-131427
    1. Dammekens E., Vanneste S., Ost J., De Ridder D. (2014). Neural correlates of high frequency repetitive transcranial magnetic stimulation improvement in post-stroke non-fluent aphasia: a case study. Neurocase 20, 1–9. 10.1080/13554794.2012.713493
    1. Datta A., Baker J. M., Bikson M., Fridriksson J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 4, 169–174. 10.1016/j.brs.2010.11.001
    1. Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207. 10.1016/j.brs.2009.03.005
    1. Demirtas-Tatlidede A., Vahabzadeh-Hagh A. M., Bernabeu M., Tormos J. M., Pascual-Leone A. (2012). Noninvasive brain stimulation in traumatic brain injury. J. Head Trauma Rehabil. 27, 274–292. 10.1097/HTR.0b013e318217df55
    1. Dijkhuizen R. M., van der Marel K., Otte W. M., Hoff E. I., van der Zijden J. P., van der Toorn A., et al. . (2012). Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl. Stroke Res. 3, 36–43. 10.1007/s12975-011-0143-8
    1. Elder G. J., Taylor J. P. (2014). Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimers. Res. Ther. 6:74. 10.1186/s13195-014-0074-1
    1. Fertonani A., Pirulli C., Miniussi C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 31, 15416–15423. 10.1523/JNEUROSCI.2002-11.2011
    1. Finocchiaro C., Maimone M., Brighina F., Piccoli T., Giglia G., Fierro B. (2006). A case study of primary progressive aphasia: improvement on verbs after rTMS treatment. Neurocase 12, 317–321. 10.1080/13554790601126203
    1. Fiori V., Coccia M., Marinelli C. V., Vecchi V., Bonifazi S., Ceravolo M. G., et al. . (2011). Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J. Cogn. Neurosci. 23, 2309–2323. 10.1162/jocn.2010.21579
    1. Flöel A., Meinzer M., Kirstein R., Nijhof S., Deppe M., Knecht S., et al. . (2011). Short-term anomia training and electrical brain stimulation. Stroke 42, 2065–2067. 10.1161/STROKEAHA.110.609032
    1. Flöel A., Rösser N., Michka O., Knecht S., Breitenstein C. (2008). Noninvasive brain stimulation improves language learning. J. Cogn. Neurosci. 20, 1415–1422. 10.1162/jocn.2008.20098
    1. Freitas C., Mondragón-Llorca H., Pascual-Leone A. (2011). Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp. Gerontol. 46, 611–627. 10.1016/j.exger.2011.04.001
    1. Fridriksson J. (2010). Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. J. Neurosci. 30, 11558–11564. 10.1523/JNEUROSCI.2227-10.2010
    1. Fridriksson J., Guo D., Fillmore P., Holland A., Rorden C. (2013). Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain 136, 3451–3460. 10.1093/brain/awt267
    1. Fridriksson J., Richardson J. D., Baker J. M., Rorden C. (2011). Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke 42, 819–821. 10.1161/STROKEAHA.110.600288
    1. Galletta E. E., Vogel-Eyny A. (2015). Translational treatment of aphasia combining neuromodulation and behavioral intervention for lexical retrieval: implications from a single case study. Front. Hum. Neurosci. 9:447. 10.3389/fnhum.2015.00447
    1. Garcia G., Norise C., Faseyitan O., Naeser M. A., Hamilton R. H. (2013). Utilizing repetitive transcranial magnetic stimulation to improve language function in stroke patients with chronic non-fluent aphasia. J. Vis. Exp. 77:e50228. 10.3791/50228
    1. Geschwind N. (1972). Language and the brain. Sci. Am. 226, 76–83. 10.1038/scientificamerican0472-76
    1. Gill J., Shah-Basak P. P., Hamilton R. (2015). It's the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 8, 253–259. 10.1016/j.brs.2014.10.018
    1. Gorno-Tempini M. L., Hillis A. E., Weintraub S., Kertesz A., Mendez M., Cappa S. F., et al. . (2011). Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014. 10.1212/WNL.0b013e31821103e6
    1. Grossman M. (2010). Primary progressive aphasia: clinicopathological correlations. Nat. Rev. Neurol. 6, 88–97. 10.1038/nrneurol.2009.216
    1. Hamilton R. H., Chrysikou E. G., Coslett B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 118, 40–50. 10.1016/j.bandl.2011.02.005
    1. Hamilton R. H., Sanders L., Benson J., Faseyitan O., Norise C., Naeser M., et al. . (2010). Stimulating conversation: enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang. 113, 45–50. 10.1016/j.bandl.2010.01.001
    1. Hasselmo M. E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67, 1–27. 10.1016/0166-4328(94)00113-T
    1. Hattori Y., Moriwaki A., Hori Y. (1990). Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci. Lett. 116, 320–324. 10.1016/0304-3940(90)90094-P
    1. Hausmann A., Weis C., Marksteiner J., Hinterhuber H., Humpel C. (2000). Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res. Mol. Brain Res. 76, 355–362. 10.1016/S0169-328X(00)00024-3
    1. Havsteen I., Madsen K. H., Christensen H., Christensen A., Siebner H. R. (2013). Diagnostic approach to functional recovery: functional magnetic resonance imaging after stroke. Front. Neurol. Neurosci. 32, 9–25. 10.1159/000346408
    1. Heiss W. D., Hartmann A., Rubi-Fessen I., Anglade C., Kracht L., Kessler J., et al. . (2013). Noninvasive brain stimulation for treatment of right- and left-handed post-stroke aphasics. Cerebrovasc. Dis. 36, 363–372. 10.1159/000355499
    1. Heiss W. D., Thiel A. (2006). A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 98, 118–123. 10.1016/j.bandl.2006.02.002
    1. Hodges J. R., Patterson K. (2007). Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 6, 1004–1014. 10.1016/S1474-4422(07)70266-1
    1. Hoffman R. E., Cavus I. (2002). Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am. J. Psychiatry 159, 1093–1102. 10.1176/appi.ajp.159.7.1093
    1. Horvath J. C., Carter O., Forte J. D. (2016). No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols. Neuropsychologia 21, 544–552. 10.1016/j.neuropsychologia.2016.09.017
    1. Horvath J. C., Forte J. D., Carter O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 8, 535–550. 10.1016/j.brs.2015.01.400
    1. Huang Y. Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45, 201–206. 10.1016/j.neuron.2004.12.033
    1. Josephs K. A., Whitwell J. L., Duffy J. R., Vanvoorst W. A., Strand E. A., Hu W. T., et al. . (2008). Progressive aphasia secondary to Alzheimer disease vs FTLD pathology. Neurology 70, 25–34. 10.1212/01.wnl.0000287073.12737.35
    1. Jung I. Y., Lim J. Y., Kang E. K., Sohn H. M., Paik N. J. (2011). The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Ann. Rehabil. Med. 35, 460–469. 10.5535/arm.2011.35.4.460
    1. Kang E. K., Kim Y. K., Sohn H. M., Cohen L. G., Paik N. J. (2011). Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restor. Neurol. Neurosci. 29, 141–152. 10.3233/RNN-2011-0587
    1. Khedr E. M., Abo El-Fetoh N., Ali A. M., El-Hammady D. H., Khalifa H., Atta H., et al. . (2014). Dual-hemisphere repetitive transcranial magnetic stimulation for rehabilitation of post-stroke aphasia: a randomized, double-blind clinical trial. Neurorehabil. Neural Repair 28, 740–750. 10.1177/1545968314521009
    1. Kreisler A., Godefroy O., Delmaire C., Debachy B., Leclercq M., Pruvo J. P., et al. . (2000). The anatomy of aphasia revisited. Neurology 54, 1117–1123. 10.1212/WNL.54.5.1117
    1. Kyrozis A., Potagas C., Ghika A., Tsimpouris P. K., Virvidaki E. S., Vemmos K. N. (2009). Incidence and predictors of post-stroke aphasia: the Arcadia Stroke Registry. Eur. J. Neurol. 16, 733–739. 10.1111/j.1468-1331.2009.02580.x
    1. Laska A. C., Hellblom A., Murray V., Kahan T., Von Arbin M. (2001). Aphasia in acute stroke and relation to outcome. J. Intern. Med. 249, 413–422. 10.1046/j.1365-2796.2001.00812.x
    1. Lee S. Y., Cheon H. J., Yoon K. J., Chang W. H., Kim Y. H. (2013). Effects of dual transcranial direct current stimulation for aphasia in chronic stroke patients. Ann. Rehabil. Med. 37, 603–610. 10.5535/arm.2013.37.5.603
    1. Li Y., Qu Y., Yuan M., Du T. (2015). Low-frequency repetitive transcranial magnetic stimulation for patients with aphasia after stoke: a meta-analysis. J. Rehabil. Med. 47, 675–681. 10.2340/16501977-1988
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247. 10.1093/brain/awf238
    1. Maeda F., Keenan J. P., Tormos J. M., Topka H., Pascual-Leone A. (2000). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 133, 425–430. 10.1007/s002210000432
    1. Mandelli M. L., Vilaplana E., Brown J. A., Hubbard H. I., Binney R. J., Attygalle S., et al. . (2016). Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain 139, 2778–2791. 10.1093/brain/aww195
    1. Marangolo P., Fiori V., Calpagnano M. A., Campana S., Razzano C., Caltagirone C., et al. . (2013). tDCS over the left inferior frontal cortex improves speech production in aphasia. Front. Hum. Neurosci. 7:539. 10.3389/fnhum.2013.00539
    1. Marangolo P., Fiori V., Gelfo F., Shofany J., Razzano C., Caltagirone C., et al. . (2014). Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restor. Neurol. Neurosci. 32, 367–379. 10.3233/RNN-130323
    1. Marangolo P., Marinelli C. V., Bonifazi S., Fiori V., Ceravolo M. G., Provinciali L., et al. . (2011). Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav. Brain Res. 225, 498–504. 10.1016/j.bbr.2011.08.008
    1. Marsh E. B., Hillis A. E. (2006). Recovery from aphasia following brain injury: the role of reorganization. Prog. Brain Res. 157, 143–156. 10.1016/S0079-6123(06)57009-8
    1. Martin P. I., Naeser M. A., Ho M., Doron K. W., Kurland J., Kaplan J., et al. . (2009). Overt naming fMRI pre- and post-TMS: two nonfluent aphasia patients, with and without improved naming post-TMS. Brain Lang. 111, 20–35. 10.1016/j.bandl.2009.07.007
    1. Martin P. I., Naeser M. A., Theoret H., Tormos J. M., Nicholas M., Kurland J., et al. . (2004). Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin. Speech Lang. 25, 181–191. 10.1055/s-2004-825654
    1. Martin P. I., Treglia E., Naeser M. A., Ho M. D., Baker E. H., Martin E. G., et al. . (2014). Language improvements after TMS plus modified CILT: pilot, open-protocol study with two, chronic nonfluent aphasia cases. Restor. Neurol. Neurosci. 32, 483–505. 10.3233/RNN-130365
    1. Medina J., Norise C., Faseyitan O., Coslett H. B., Turkeltaub P. E., Hamilton R. H. (2012). Finding the right words: transcranial magnetic stimulation improves discourse productivity in non-fluent aphasia after stroke. Aphasiology 26, 1153–1168. 10.1080/02687038.2012.710316
    1. Meinzer M., Lindenberg R., Sieg M. M., Nachtigall L., Ulm L., Flöel A. (2014). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Front. Aging Neurosci. 6:253. 10.3389/fnagi.2014.00253
    1. Meinzer M., Mohammadi S., Kugel H., Schiffbauer H., Flöel A., Albers J., et al. . (2010). Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia. Neuroimage 53, 283–290. 10.1016/j.neuroimage.2010.06.004
    1. Mesulam M. (2008). Primary progressive aphasia pathology. Ann. Neurol. 63, 124–125. 10.1002/ana.20940
    1. Mesulam M. M. (2001). Primary progressive aphasia. Ann. Neurol. 49, 425–432. 10.1002/ana.91
    1. Mimura M., Kato M., Sano Y., Kojima T., Naeser M., Kashima H. (1998). Prospective and retrospective studies of recovery in aphasia changes in cerebral blood flow and language functions. Brain 121, 2083–2094. 10.1093/brain/121.11.2083
    1. Monti A., Cogiamanian F., Marceglia S., Ferrucci R., Mameli F., Mrakic-Sposta S., et al. . (2008). Improved naming after transcranial direct current stimulation in aphasia. J. Neurol. Neurosurg. Psychiatry 79, 451–453. 10.1136/jnnp.2007.135277
    1. Moriwaki A. (1991). Polarizing currents increase noradrenaline-elicited accumulation of cyclic AMP in rat cerebral cortex. Brain Res. 544, 248–252. 10.1016/0006-8993(91)90061-Y
    1. Mottaghy F. M., Hungs M., Brügmann M., Sparing R., Boroojerdi B., Foltys H., et al. . (1999). Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology 53, 1806–1812. 10.1212/WNL.53.8.1806
    1. Naeser M. A., Martin P. I., Ho M., Treglia E., Kaplan E., Bashir S., et al. . (2012). Transcranial magnetic stimulation and aphasia rehabilitation. Arch. Phys. Med. Rehabil. 93(1 Suppl.), S26–S34. 10.1016/j.apmr.2011.04.026
    1. Naeser M. A., Martin P. I., Nicholas M., Baker E. H., Seekins H., Helm-Estabrooks N., et al. . (2005). Improved naming after TMS treatments in a chronic, global aphasia patient–case report. Neurocase 11, 182–193. 10.1080/13554790590944663
    1. Naeser M. A., Martin P. I., Theoret H., Kobayashi M., Fregni F., Nicholas M., et al. . (2011). TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia. Brain Lang. 119, 206–213. 10.1016/j.bandl.2011.07.005
    1. National Stroke Association (2008). Available online at:
    1. Nickels L. (2002). Improving word finding: practices makes (closer to) perfect? Aphasiology 16, 1047–1060. 10.1080/02687040143000618
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901. 10.1212/WNL.57.10.1899
    1. Ovadia-Caro S., Villringer K., Fiebach J., Jungehulsing G. J., van der Meer E., Margulies D. S., et al. . (2013). Longitudinal effects of lesions on functional networks after stroke. J. Cereb. Blood Flow Metab. 33, 1279–1285. 10.1038/jcbfm.2013.80
    1. Pascual-Leone A., Tormos J. M., Keenan J., Tarazona F., Cañete C., Catalá M. D. (1998). Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol. 15, 333–343. 10.1097/00004691-199807000-00005
    1. Pascual-Leone A., Valls-Solé J., Wassermann E. M., Hallett M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117, 847–858. 10.1093/brain/117.4.847
    1. Paulus W. (2004). Outlasting excitability shifts induced by direct current stimulation of the human brain. Suppl. Clin. Neurophysiol. 57, 708–714. 10.1016/S1567-424X(09)70411-8
    1. Peelle J. E., Troiani V., Gee J., Moore P., McMillan C., Vesely L., et al. . (2008). Sentence comprehension and voxel-based morphometry in progressive nonfluent aphasia, semantic dementia, and nonaphasic frontotemporal dementia. J. Neurolinguist. 21, 418–432. 10.1016/j.jneuroling.2008.01.004
    1. Poeppel D. (2012). The maps problem and the mapping problem: two challenges for a cognitive neuroscience of speech and language. Cogn. Neuropsychol. 29, 34–55. 10.1080/02643294.2012.710600
    1. Price A. R., McAdams H., Grossman M., Hamilton R. H. (2015). A meta-analysis of transcranial direct current stimulation studies examining the reliability of effects on language measures. Brain Stimul. 8, 1093–1100. 10.1016/j.brs.2015.06.013
    1. Prins R., Bastiaanse R. (2006). The early history of aphasiology: from the egyptian surgeons (c.1700 BC) to Broca (1861). Aphasiology 20, 762–791. 10.1080/02687030500399293
    1. Priori A., Hallett M., Rothwell J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2, 241–245. 10.1016/j.brs.2009.02.004
    1. Ren C. L., Zhang G. F., Xia N., Jin C. H., Zhang X. H., Hao J. F., et al. . (2014). Effect of low-frequency rTMS on aphasia in stroke patients: a meta-analysis of randomized controlled trials. PLoS ONE 9:e102557. 10.1371/journal.pone.0102557
    1. Robey R. R. (1994). The efficacy of treatment for aphasic persons: a meta-analysis. Brain Lang. 47, 582–608. 10.1006/brln.1994.1060
    1. Robey R. R., Wambaugh J. (1999). Single-subject versus randomized group design. ASHA 41, 14–15.
    1. Rogalski E., Cobia D., Harrison T. M., Wieneke C., Thompson C. K., Weintraub S., et al. . (2011). Anatomy of language impairments in primary progressive aphasia. J. Neurosci. 31, 3344–3350. 10.1523/JNEUROSCI.5544-10.2011
    1. Rosen H. J., Petersen S. E., Linenweber M. R., Snyder A. Z., White D. A., Chapman L., et al. . (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 26, 1883–1894. 10.1212/WNL.55.12.1883
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039. 10.1016/j.clinph.2009.08.016
    1. Rosso C., Perlbarg V., Valabregue R., Arbizu C., Ferrieux S., Alshawan B., et al. . (2014). Broca's area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimul. 7, 627–635. 10.1016/j.brs.2014.06.004
    1. Santos M. D., Gagliardi R. J., Mac-Kay A. P., Boggio P. S., Lianza R., Fregni F. (2013). Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study. Sao Paulo Med. J. 131, 422–426. 10.1590/1516-3180.2013.1316595
    1. Sarasso S., Santhanam P., Määtta S., Poryazova R., Ferrarelli F., Tononi G., et al. . (2010). Non-fluent aphasia and neural reorganization after speech therapy: insights from human sleep electrophysiology and functional magnetic resonance imaging. Arch. Ital. Biol. 148, 271–278.
    1. Saur D., Hartwigsen G. (2012). Neurobiology of language recovery after stroke: lessons from neuroimaging studies. Arch. Phys. Med. Rehabil. 93, S15–S25. 10.1016/j.apmr.2011.03.036
    1. Saur D., Lange R., Baumgaertner A. (2006). Dynamics of language reorganization after stroke. Brain 129, 1371–1384. 10.1093/brain/awl090
    1. Schjetnan A. G., Escobar M. L. (2012). In vivo BDNF modulation of hippocampal mossy fiber plasticity induced by high frequency stimulation. Hippocampus 22, 1–8. 10.1002/hipo.20866
    1. Schlaug G., Marchina S., Norton A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca's aphasia undergoing intense intonation-based speech therapy. Ann. N.Y Acad. Sci. 1169, 385–394. 10.1111/j.1749-6632.2009.04587.x
    1. Shah-Basak P. P., Norise C., Garcia G., Torres J., Faseyitan O., Hamilton R. H. (2015). Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front. Hum. Neurosci. 9:201. 10.3389/fnhum.2015.00201
    1. Shah-Basak P. P., Wurzman R., Purcell J. B., Gervits F., Hamilton R. (2016). Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor. Neurol Neurosci. 34, 537–558. 10.3233/RNN-150616
    1. Sharp D. J., Turkheimer F. E., Bose S. K., Scott S. K., Wise R. J. S. (2010). Increased frontoparietal integration after stroke and cognitive recovery. Ann. Neurol. 68, 753–756. 10.1002/ana.21866
    1. Shimizu T., Hosaki A., Hino T., Sato M., Komori T., Hirai S., et al. . (2002). Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125, 1896–1907. 10.1093/brain/awf183
    1. Strafella A. P., Paus T., Barrett J., Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21:RC157.
    1. Strafella A. P., Paus T., Fraraccio M., Dagher A. (2003). Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brian 126, 2609–2315. 10.1093/brain/awg268
    1. Thiel A., Hartmann A., Rubi-Fessen I., Anglade C., Kracht L., Weiduschat N., et al. . (2013). Effects of noninvasive brain stimulation on language networks and recovery in early post-stroke aphasia. Stroke 44, 2240–2246. 10.1161/STROKEAHA.111.000574
    1. Thompson H. E., Robson H., Lambon Ralph M. A., Jefferies E. (2015). Varieties of semantic ‘access’ deficit in Wernicke's aphasia and semantic aphasia. Brain 138, 3776–3792. 10.1093/brain/awv281
    1. Töpper R., Mottaghy F. M., Brügmann M., Noth J., Huber W. (1998). Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke's area. Exp. Brain Res. 121, 371–378. 10.1007/s002210050471
    1. Trebbastoni A., Raccah R., de Lena C., Zangen A., Inghilleri M. (2013). Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimul. 6, 545–553. 10.1016/j.brs.2012.09.014
    1. Tsapkini K., Frangakis C., Gomez Y., Davis C., Hillis A. E. (2014). Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: preliminary results and challenges. Aphasiology 28, 1112–1130. 10.1080/02687038.2014.930410
    1. Turkeltaub P. E. (2015). Brain stimulation and the role of the right hemisphere in aphasia recovery. Curr. Neurol. Neurosci. Rep. 15:72. 10.1007/s11910-015-0593-6
    1. Turkeltaub P. E., Coslett H. B., Thomas A. L., Faseyitan O., Benson J., Norise C., et al. . (2012). The right hemisphere is not unitary in its role in aphasia recovery. Cortex 48, 1179–1186. 10.1016/j.cortex.2011.06.010
    1. Turkeltaub P. E., Eickhoff S. B., Laird A. R., Fox M., Wiener M., Fox P. (2011a). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33, 1–13. 10.1002/hbm.21186
    1. Turkeltaub P. E., Messing S., Norise C., Hamilton R. H. (2011b). Are networks for residual language function and recovery consistent across aphasic patients? Neurology 76, 1726–1734. 10.1212/WNL.0b013e31821a44c1
    1. Vandenbulcke M., Peeters R., Van Hecke P., Vandenberghe R. (2005). Anterior temporal laterality in primary progressive aphasia shifts to the right. Ann. Neurol. 58, 362–370. 10.1002/ana.20588
    1. van Hees S., McMahon K., Angwin A., de Zubicaray G., Read S., Copland D. A. (2014). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Hum. Brain Mapp. 35, 3919–3931. 10.1002/hbm.22448
    1. Vestito L., Rosellini S., Mantero M., Bandini F. (2014). Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: a pilot study. Front. Hum. Neurosci. 8:785. 10.3389/fnhum.2014.00785
    1. Vines B. W., Norton A. C., Schlaug G. (2011). Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front. Psychol. 2:230. 10.3389/fpsyg.2011.00230
    1. Vuksanović J., Jelić M. B., Milanović S. D., Kačar K., Konstantinović L., Filipović S. R. (2015). Improvement of language functions in a chronic non-fluent post-stroke aphasic patient following bilateral sequential theta burst magnetic stimulation. Neurocase 21, 244–250. 10.1080/13554794.2014.890731
    1. Wade D. T., Hewer R. L., David R. M., Enderby P. M. (1986). Aphasia after stroke: natural history and associated deficits. J. Neurol. Neurosurg. Psychiatry 49, 11–16. 10.1136/jnnp.49.1.11
    1. Waldowski K., Seniów J., Leśniak M., Iwański S., Członkowska A. (2012). Effect of low-frequency repetitive transcranial magnetic stimulation on naming abilities in early-stroke aphasic patients: a prospective, randomized, double-blind sham-controlled study. Sci. World J. 2012:518568. 10.1100/2012/518568
    1. Wang J., Wu D., Chen Y., Yuan Y., Zhang M. (2013). Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neurosci. Lett. 549, 29–33. 10.1016/j.neulet.2013.06.019
    1. Warburton E., Price C. J., Swinburn K., Wise R. J. (1999). Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J. Neurol. Neurosurg. Psychiatry 66, 155–161. 10.1136/jnnp.66.2.155
    1. Weiduschat N., Thiel A., Rubi-Fessen I., Hartmann A., Kessler J., Merl P., et al. . (2011). Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke 42, 409–415. 10.1161/STROKEAHA.110.597864
    1. Wernicke C. (1874). Der Aphasische Symptomenkomplex. Berlin: Fischer.
    1. Wilson S. M., Dronkers N. F., Ogar J. M., Jang J., Growdon M. E., Agosta F., et al. . (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J. Neurosci. 30, 16845–16854. 10.1523/JNEUROSCI.2547-10.2010
    1. Wilson S. M., Galantucci S., Tartaglia M. C., Rising K., Patterson D. K., Henry M. L., et al. . (2011). Syntactic processing depends on dorsal language tracts. Neuron 72, 397–403. 10.1016/j.neuron.2011.09.014
    1. Winhuisen L., Thiel A., Schumacher B., Kessler J., Rudolf J., Haupt W. F., et al. . (2005). Role of the contralateral inferior frontal gyrus in recovery of language function in post-stroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36, 1759–1763. 10.1161/01.STR.0000174487.81126.ef
    1. Wu D., Wang J., Yuan Y. (2015). Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neurosci. Lett. 589, 115–120. 10.1016/j.neulet.2015.01.045
    1. Xing S., Lacey E. H., Skipper-Kallal L. M., Jiang X., Harris-Love M. L., Zeng J., et al. . (2016). Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke. Brain 139, 227–241. 10.1093/brain/awv323
    1. Yang M., Li J., Li Y., Li R., Pang Y., Yao D., et al. . (2016). Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Sci. Rep. 6:24803. 10.1038/srep24803
    1. You D. S., Kim D. Y., Chun M. H., Jung S. E., Park S. J. (2011). Cathodal transcranial direct current stimulation of the right Wernicke's area improves comprehension in subacute stroke patients. Brain Lang. 119, 1–5. 10.1016/j.bandl.2011.05.002
    1. Yourganov G., Smith K. G., Fridriksson J., Rorden C. (2015). Predicting aphasia type from brain damage measured with structural MRI. Cortex 73, 203–215. 10.1016/j.cortex.2015.09.005

Source: PubMed

3
購読する