Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

Rebecca L Wilson, Jessica A Grieger, Tina Bianco-Miotto, Claire T Roberts, Rebecca L Wilson, Jessica A Grieger, Tina Bianco-Miotto, Claire T Roberts

Abstract

Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status.

Keywords: circulating zinc; dietary zinc intake; pregnancy; pregnancy complications; zinc.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the search strategy used in this review including the relevant number of papers at each point.

References

    1. Black R.E., Victora C.G., Walker S.P., Bhutta Z.A., Christian P., de Onis M., Ezzati M., Grantham-McGregor S., Katz J., Martorell R., et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–451. doi: 10.1016/S0140-6736(13)60937-X.
    1. Grieger J.A., Clifton V.L. A review of the impact of dietary intakes in human pregnancy on infant birthweight. Nutrients. 2015;7:153–178. doi: 10.3390/nu7010153.
    1. Gluckman P.D., Hanson M.A. Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatr. Res. 2004;56:311–317. doi: 10.1203/01.PDR.0000135998.08025.FB.
    1. Black R.E., Allen L.H., Bhutta Z.A., Caulfield L.E., de Onis M., Ezzati M., Mathers C., Rivera J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet. 2008;371:243–260. doi: 10.1016/S0140-6736(07)61690-0.
    1. Fischer Walker C.L., Ezzati M., Black R.E. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 2009;63:591–597. doi: 10.1038/ejcn.2008.9.
    1. Organisation WH (2015) Fact Sheet No 290—Millennium Development Goals (MDGs) [(accessed on 13 January 2016)]. Available online: .
    1. Cousins R., Zinc I., Bowman B.A., Russell R.M. Present Knowledge in Nutrition. Volume 9. DC ILSI Press; Washington, DC, USA: 2006. pp. 445–457.
    1. MacDonald R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000;130:1500s–1508s.
    1. Maret W. Molecular aspects of human cellular zinc homeostasis: Redox control of zinc potentials and zinc signals. Biometals. 2009;22:149–157. doi: 10.1007/s10534-008-9186-z.
    1. Prasad A.S. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 2008;43:370–377. doi: 10.1016/j.exger.2007.10.013.
    1. Butler Walker J., Houseman J., Seddon L., McMullen E., Tofflemire K., Mills C., Corriveau A., Weber J.-P., LeBlanc A., Walker M. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ. Res. 2006;100:295–318. doi: 10.1016/j.envres.2005.05.006.
    1. Perveen S., Altaf W., Vohra N., Bautista M.L., Harper R.G., Wapnir R.A. Effect of gestational age on cord blood plasma copper, zinc, magnesium and albumin. Early Hum. Dev. 2002;69:15–23. doi: 10.1016/S0378-3782(02)00024-5.
    1. Tsuzuki S., Morimoto N., Hosokawa S., Matsushita T. Associations of maternal and neonatal serum trace element concentrations with neonatal birth weight. PLoS ONE. 2013;8:641. doi: 10.1371/journal.pone.0075627.
    1. Swanson C.A., King J.C. Reduced serum zinc concentration during pregnancy. Obstet. Gynecol. 1983;62:313–318. doi: 10.1097/00006250-198309000-00010.
    1. Hurley L.S., Swenerton H. Congenital malformations resulting from zinc deficiency in rats. Proc. Soc. Exp. Biol. Med. 1966;123:692–696. doi: 10.3181/00379727-123-31578.
    1. Dempsey C., McCormick N.H., Croxford T.P., Seo Y.A., Grider A., Kelleher S.L. Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. J. Nutr. 2012;142:655–660. doi: 10.3945/jn.111.150623.
    1. Kim J.T., Baek S.H., Lee S.H., Park E.K., Kim E.C., Kwun I.S., Shin H.I. Zinc-deficient diet decreases fetal long bone growth through decreased bone matrix formation in mice. J. Med. Food. 2009;12:118–123. doi: 10.1089/jmf.2007.0647.
    1. McCormick N.H., King J., Krebs N., Soybel D.I., Kelleher S.L. Redistribution of tissue zinc pools during lactation and dyshomeostasis during marginal zinc deficiency in mice. J. Trace Elem. Med. Biol. 2014;29:170–175. doi: 10.1016/j.jtemb.2014.06.002.
    1. Tian X., Anthony K., Neuberger T., Diaz F.J. Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biol. Reprod. 2014;90:83. doi: 10.1095/biolreprod.113.113910.
    1. Brown K.H., Wuehler S.E., Peerson J.M. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr. Bull. 2001;22:113–125. doi: 10.1177/156482650102200201.
    1. National Health and Medical Research Council . Nutrient Reference Values for Australia and New Zealand. NHMRC; Canberra, Australia: 2005.
    1. Food and Nutrition Board: Institute of Medicine . Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. The National Academies Press; Washington, DC, USA: 2001.
    1. Caulfield L.E., Zavaleta N., Shankar A.H., Merialdi M. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am. J. Clin. Nutr. 1998;68:499s–508s.
    1. King J.C. Determinants of maternal zinc status during pregnancy. Am. J. Clin. Nutr. 2000;71:1334s–1343s.
    1. Parr R. Assessment of dietary intakes. Trace Elem. Hum. Nutr. Health. 1996;1996:265–288.
    1. Caulfield L.E., Black R.E. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors Geneva. World Health Organization; Geneva, Swizterland: 2004. Zinc deficiency; pp. 257–279.
    1. Wessells K.R., Brown K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE. 2012;7:641. doi: 10.1371/journal.pone.0050568.
    1. Ota E., Mori R., Middleton P., Tobe-Gai R., Mahomed K., Miyazaki C., Bhutta Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2015 doi: 10.1002/14651858.CD000230.pub5.
    1. Shah D., Sachdev H.P. Effect of gestational zinc deficiency on pregnancy outcomes: Summary of observation studies and zinc supplementation trials. Br. J. Nutr. 2001;85:S101–S108. doi: 10.1079/BJN2000301.
    1. Ma Y., Shen X., Zhang D. The relationship between serum zinc level and preeclampsia: A Meta-Analysis. Nutrients. 2015;7:7806–7820. doi: 10.3390/nu7095366.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gotzsche P.C., Ioannidis J.P., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009;62:e1–e34. doi: 10.1016/j.jclinepi.2009.06.006.
    1. Adeniyi F.A. The implications of hypozincemia in pregnancy. Acta Obstet. Gynecol. Scand. 1987;66:579–582. doi: 10.3109/00016348709022059.
    1. Akinloye O., Oyewale O.J., Oguntibeju O.O. Evaluation of trace elements in pregnant women with pre-eclampsia. Afr. J. Biotechnol. 2010;9:5196–5202.
    1. Kumru S., Aydin S., Simsek M., Sahin K., Yaman M., Ay G. Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women. Biol. Trace Elem. Res. 2003;94:105–112. doi: 10.1385/BTER:94:2:105.
    1. Wang Y., Tan M., Huang Z., Sheng L., Ge Y., Zhang H., Jiang M., Zhang G. Elemental contents in serum of pregnant women with gestational diabetes mellitus. Biol. Trace Elem. Res. 2002;88:113–118. doi: 10.1385/BTER:88:2:113.
    1. Farzin L., Sajadi F. Comparison of serum trace element levels in patients with or without pre-eclampsia. J. Res. Med. Sci. 2012;17:938–941.
    1. Gupta S., Jain N.P., Avasthi K., Wander G.S. Plasma and erythrocyte zinc in pre-eclampsia and its correlation with foetal outcome. J. Assoc. Phys. India. 2014;62:306–310.
    1. Hyvonen-Dabek M., Nikkinen-Vilkki P., Dabek J.T. Selenium and other elements in human maternal and umbilical serum, as determined simultaneously by proton-induced X-ray emission. Clin. Chem. 1984;30:529–533.
    1. Jain S., Sharma P., Kulshreshtha S., Mohan G., Singh S. The role of calcium, magnesium, and zinc in pre-eclampsia. Biol. Trace Elem. Res. 2010;133:162–170. doi: 10.1007/s12011-009-8423-9.
    1. Donangelo C.M., King J.C. Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients. 2012;4:782–798. doi: 10.3390/nu4070782.
    1. Tamura T., Goldenberg R.L. Zinc nutriture and pregnancy outcome. Nutr. Res. 1996;16:139–181. doi: 10.1016/0271-5317(95)02068-3.
    1. Simmer K., Iles C.A., Slavin B., Keeling P.W., Thompson R.P. Maternal nutrition and intrauterine growth retardation. Hum. Nutr. Clin. Nutr. 1987;41:193–197.
    1. Negandhi P.H., Negandhi H.N., Zodpey S.P., Ughade S.N., Biranjan J.R. Risk factors for low birth weight in an Indian urban setting: A nested case control study. Asia Pac. J. Public Health. 2014;26:461–469. doi: 10.1177/1010539511431486.
    1. Scholl T.O., Hediger M.L., Schall J.I., Fischer R.L., Khoo C.S. Low zinc intake during pregnancy: Its association with preterm and very preterm delivery. Am. J. Epidemiol. 1993;137:1115–1124.
    1. Neggers Y.H., Goldenberg R.L., Tamura T., Cliver S.P., Hoffman H.J. The relationship between maternal dietary intake and infant birthweight. Acta Obstet. Gynecol. Scand. Suppl. 1997;165:71–75.
    1. Wang H., Hu Y.-F., Hao J.-H., Chen Y.-H., Su P.-Y., Wang Y., Yu Z., Fu L., Xu Y.-Y., Zhang C., et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: A population-based birth cohort study. Sci. Rep. 2015;5:11262. doi: 10.1038/srep11262.
    1. Voss Jepsen L., Clemmensen K. Zinc in Danish women during late normal pregnancy and pregnancies with intra-uterine growth retardation. Acta Obstet. Gynecol. Scand. 1987;66:401–405. doi: 10.3109/00016348709022042.
    1. Borella P., Szilagyi A., Than G., Csaba I., Giardino A., Facchinetti F. Maternal plasma concentrations of magnesium, calcium, zinc and copper in normal and pathological pregnancies. Sci. Total Environ. 1990;99:67–76. doi: 10.1016/0048-9697(90)90212-D.
    1. Neggers Y.H., Cutter G.R., Acton R.T., Alvarez J.O., Bonner J.L., Goldenberg R.L., Go R.C., Roseman J.M. A positive association between maternal serum zinc concentration and birth weight. Am. J. Clin. Nutr. 1990;51:678–684.
    1. Bro S., Berendtsen H., Norgaard J., Host A., Jorgensen P.J. Serum zinc and copper concentrations in maternal and umbilical cord blood. Relation to course and outcome of pregnancy. Scand. J. Clin. Lab. Investig. 1988;48:805–811. doi: 10.3109/00365518809088764.
    1. Mistry H.D., Kurlak L.O., Young S.D., Briley A.L., Pipkin F.B., Baker P.N., Poston L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern. Child. Nutr. 2014;10:327–334. doi: 10.1111/j.1740-8709.2012.00430.x.
    1. Tamura T., Goldenberg R.L., Johnston K.E., Cliver S.P., Hoffman H.J. Serum concentrations of zinc, folate, vitamins A and E, and proteins, and their relationships to pregnancy outcome. Acta Obstet. Gynecol. Scand. Suppl. 1997;165:63–70.
    1. Tamura T., Goldenberg R.L., Johnston K.E., DuBard M. Maternal plasma zinc concentrations and pregnancy outcome. Am. J. Clin. Nutr. 2000;71:109–113.
    1. Ghosh A., Fong L.Y., Wan C.W., Liang S.T., Woo J.S., Wong V. Zinc deficiency is not a cause for abortion, congenital abnormality and small-for-gestational age infant in Chinese women. Br. J. Obstet. Gynaecol. 1985;92:886–891. doi: 10.1111/j.1471-0528.1985.tb03067.x.
    1. Cherry F.F., Bennett E.A., Bazzano G.S., Johnson L.K., Fosmire G.J., Batson H.K. Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy. Am. J. Clin. Nutr. 1981;34:2367–2375.
    1. Bogden J.D., Thind I.S., Kemp F.W., Caterini H. Plasma concentrations of calcium, chromium, copper, iron, magnesium, and zinc in maternal and cord blood and their relationship to low birth weight. J. Lab. Clin. Med. 1978;92:455–462.
    1. Atinmo T., Mbofung C., Osinusi B.O. Relationship of zinc and copper concentrations in maternal and cord blood and birth weight. Int. J. Gynaecol. Obstet. 1980;18:452–454.
    1. Abass R.M., Hamdan H.Z., Elhassan E.M., Hamdan S.Z., Ali N.I., Adam I. Zinc and copper levels in low birth weight deliveries in Medani Hospital, Sudan. BMC Res. Notes. 2014;7:641. doi: 10.1186/1756-0500-7-386.
    1. Rwebembera A.A.-B., Munubhi E.K.D., Manji K.P., Mpembeni R., Philip J. Relationship between infant birth weight </=2000 g and maternal zinc levels at Muhimbili National Hospital, Dar Es Salaam, Tanzania. J. Trop. Pediatr. 2006;52:118–125.
    1. Bahl L., Chaudhuri L.S., Pathak R.M. Study of serum zinc in neonates and their mothers in Shimla hills (Himachal Pradesh) Indian J. Pediatr. 1994;61:571–575. doi: 10.1007/BF02751721.
    1. Singh P.P., Khushlani K., Veerwal P.C., Gupta R.C. Relationship between birth weight and zinc status of newly born infants and their mothers. Indian J. Physiol. Pharmacol. 1989;33:134–135.
    1. Prema K. Predictive value of serum copper and zinc in normal and abnormal pregnancy. Indian J. Med. Res. 1980;71:554–560.
    1. Badakhsh M.H., Khamseh M.E., Seifoddin M., Kashanian M., Malek M., Shafiee G., Baradaran H.R. Impact of maternal zinc status on fetal growth in an Iranian pregnant population. Gynecol. Endocrinol. 2011;27:1074–1076. doi: 10.3109/09513590.2011.569792.
    1. Goel R., Misra P.K. Study of plasma zinc in neonates and their mothers. Indian Pediatr. 1982;19:611–614.
    1. Srivastava S., Mehrotra P.K., Srivastava S.P., Siddiqui M.K.J. Some essential elements in maternal and cord blood in relation to birth weight and gestational age of the baby. Biol. Trace Elem. Res. 2002;86:97–105.
    1. Jeswani R.M., Vani S.N. A study of serum zinc levels in cord blood of neonates and their mothers. Indian J. Pediatr. 1991;58:683–686. doi: 10.1007/BF02820191.
    1. George S.S., Swaminathan S., Kanagasabapathy A.S., Seshadri L. Maternal zinc indices and small babies. Natl. Med. J. India. 1998;11:120–121.
    1. Akman I., Arioglu P., Koroglu O.A., Sakalli M., Ozek E., Topuzoglu A., Eren S., Bereket A. Maternal zinc and cord blood zinc, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 levels in small-for-gestational-age newborns. Clin. Exp. Obstet. Gynecol. 2006;33:238–240.
    1. Ozdemir U., Gulturk S., Aker A., Guvenal T., Imir G., Erselcan T. Correlation between birth weight, leptin, zinc and copper levels in maternal and cord blood. J. Physiol. Biochem. 2007;63:121–128. doi: 10.1007/BF03168223.
    1. Tande D.L., Ralph J.L., Johnson L.K., Scheett A.J., Hoverson B.S., Anderson C.M. First trimester dietary intake, biochemical measures, and subsequent gestational hypertension among nulliparous women. J. Midwifery Womens Health. 2013;58:423–430. doi: 10.1111/jmwh.12007.
    1. Lazebnik N., Kuhnert B.R., Kuhnert P.M. Zinc, cadmium, and hypertension in parturient women. Am. J. Obstet. Gynecol. 1989;161:437–440. doi: 10.1016/0002-9378(89)90538-3.
    1. Kim J., Kim Y.J., Lee R., Moon J.H., Jo I. Serum levels of zinc, calcium, and iron are associated with the risk of preeclampsia in pregnant women. Nutr. Res. 2012;32:764–769. doi: 10.1016/j.nutres.2012.09.007.
    1. Kiilholma P., Paul R., Pakarinen P., Gronroos M. Copper and zinc in pre-eclampsia. Acta Obstet. Gynecol. Scand. 1984;63:629–631. doi: 10.3109/00016348409155551.
    1. Araujo Brito J., do Nascimento Marreiro D., Moita Neto J.M., Michelle Costa e Silva D., Goncalves de Sousa Almondes K., Valadares Neto J.D.D., do Nascimento Nogueira N. Enzyme activity of superoxide dismutase and zincemia in women with preeclampsia. Nutr. Hosp. 2013;28:486–490.
    1. Magri J., Sammut M., Savona-Ventura C. Lead and other metals in gestational hypertension. Int. J. Gynaecol. Obstet. 2003;83:29–36. doi: 10.1016/S0020-7292(03)00212-1.
    1. Fenzl V., Flegar-Mestric Z., Perkov S., Andrisic L., Tatzber F., Zarkovic N., Duic Z. Trace elements and oxidative stress in hypertensive disorders of pregnancy. Arch. Gynecol. Obstet. 2013;287:19–24. doi: 10.1007/s00404-012-2502-4.
    1. Katz O., Paz-Tal O., Lazer T., Aricha-Tamir B., Mazor M., Wiznitzer A., Sheiner E. Severe pre-eclampsia is associated with abnormal trace elements concentrations in maternal and fetal blood. J. Matern. Fetal Neonatal Med. 2012;25:1127–1130. doi: 10.3109/14767058.2011.624221.
    1. Mistry H.D., Gill C.A., Kurlak L.O., Seed P.T., Hesketh J.E., Meplan C., Schomburg L., Chappell L.C., Morgan L., Poston L. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks gestation in nulliparous women who subsequently develop preeclampsia. Free Radic. Biol. Med. 2015;78:147–155. doi: 10.1016/j.freeradbiomed.2014.10.580.
    1. Lao T.T., Chin R.K., Swaminathan R., Mak Y.T. Plasma and erythrocyte zinc concentrations in pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1989;30:117–122. doi: 10.1016/0028-2243(89)90057-9.
    1. Sarwar M.S., Ahmed S., Ullah M.S., Kabir H., Rahman G.K.M.M., Hasnat A., Islam M.S. Comparative study of serum zinc, copper, manganese, and iron in preeclamptic pregnant women. Biol. Trace Elem. Res. 2013;154:14–20. doi: 10.1007/s12011-013-9721-9.
    1. Ilhan N., Ilhan N., Simsek M. The changes of trace elements, malondialdehyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia. Clin. Biochem. 2002;35:393–397. doi: 10.1016/S0009-9120(02)00336-3.
    1. Bakacak M., Kilinc M., Serin S., Ercan O., Kostu B., Avci F., Kiran H., Kiran G. Changes in copper, zinc, and malondialdehyde levels and superoxide dismutase activities in pre-eclamptic pregnancies. Med. Sci. Monit. 2015;21:2414–2420.
    1. Al-Jameil N., Tabassum H., Al-Mayouf H., Aljohar H.I., Alenzi N.D., Hijazy S.M., Khan F.A. Analysis of serum trace elements-copper, manganese and zinc in preeclamptic pregnant women by inductively coupled plasma optical emission spectrometry: A prospective case controlled study in Riyadh, Saudi Arabia. Int. J. Clin. Exp. Pathol. 2014;7:1900–1910.
    1. Bassiouni B.A., Foda A.I., Rafei A.A. Maternal and fetal plasma zinc in pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1979;9:75–80. doi: 10.1016/0028-2243(79)90002-9.
    1. Harma M., Harma M., Kocyigit A. Correlation between maternal plasma homocysteine and zinc levels in preeclamptic women. Biol. Trace Elem. Res. 2005;104:97–105. doi: 10.1385/BTER:104:2:097.
    1. Rafeeinia A., Tabandeh A., Khajeniazi S., Marjani A.J. Serum copper, zinc and lipid peroxidation in pregnant women with preeclampsia in gorgan. Open Biochem. J. 2014;8:83–88. doi: 10.2174/1874091X01408010083.
    1. Vafaei H., Dalili M., Hashemi S.A. Serum concentration of calcium, magnesium and zinc in normotensive versus preeclampsia pregnant women: A descriptive study in women of Kerman province of Iran. Iran. J. Reprod. Med. 2015;13:23–26.
    1. Ahsan T., Banu S., Nahar Q., Ahsan M., Khan M.N., Islam S.N. Serum trace elements levels in preeclampsia and eclampsia: Correlation with the pregnancy disorder. Biol. Trace Elem. Res. 2013;152:327–332. doi: 10.1007/s12011-013-9637-4.
    1. Rathore S., Gupta A., Batra H.S., Rathore R. Comparative study of trace elements and serum ceruloplasmin level in normal and pre-eclamptic pregnancies with their cord blood. Biomed. Res. 2011;22:207–210.
    1. Kolusari A., Kurdoglu M., Yildizhan R., Adali E., Edirne T., Cebi A., Demir H., Yoruk I.H. Catalase activity, serum trace element and heavy metal concentrations, and vitamin A, D and E levels in pre-eclampsia. J. Int. Med. Res. 2008;36:1335–1341. doi: 10.1177/147323000803600622.
    1. Atamer Y., Kocyigit Y., Yokus B., Atamer A., Erden A.C. Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005;119:60–66. doi: 10.1016/j.ejogrb.2004.06.033.
    1. Adam B., Malatyalioglu E., Alvur M., Talu C. Magnesium, zinc and iron levels in pre-eclampsia. J. Matern. Fetal Med. 2001;10:246–250. doi: 10.1080/jmf.10.4.246.250-14.
    1. Vigeh M., Yokoyama K., Ramezanzadeh F., Dahaghin M., Sakai T., Morita Y., Kitamura F., Sato H., Kobayashi Y. Lead and other trace metals in preeclampsia: A case-control study in Tehran, Iran. Environ. Res. 2006;100:268–275. doi: 10.1016/j.envres.2005.05.005.
    1. Carmichael S.L., Yang W., Shaw G.M., National Birth Defects Prevention Sdudy Maternal dietary nutrient intake and risk of preterm delivery. Am. J. Perinatol. 2013;30:579–588.
    1. Hsu W.-Y., Wu C.-H., Hsieh C.T.-C., Lo H.-C., Lin J.-S., Kao M.-D. Low body weight gain, low white blood cell count and high serum ferritin as markers of poor nutrition and increased risk for preterm delivery. Asia Pac. J. Clin. Nutr. 2013;22:90–99.
    1. Wang H., Hu Y.-F., Hao J.-H., Chen Y.-H., Wang Y., Zhu P., Zhang C., Xu Y.-Y., Tao F.-B., Xu D.-X. Maternal serum zinc concentration during pregnancy is inversely associated with risk of preterm birth in a Chinese population. J. Nutr. 2016;146:509–515. doi: 10.3945/jn.115.220632.
    1. Bo S., Lezo A., Menato G., Gallo M.-L., Bardelli C., Signorile A., Berutti C., Massobrio M., Pagano G.F. Gestational hyperglycemia, zinc, selenium, and antioxidant vitamins. Nutrition. 2005;21:186–191. doi: 10.1016/j.nut.2004.05.022.
    1. Behboudi-Gandevani S., Safary K., Moghaddam-Banaem L., Lamyian M., Goshtasebi A., Goshtasbi A., Alian-Moghaddam N. The relationship between maternal serum iron and zinc levels and their nutritional intakes in early pregnancy with gestational diabetes. Biol. Trace Elem. Res. 2013;154:7–13. doi: 10.1007/s12011-013-9703-y.
    1. Wibell L., Gebre-Medhin M., Lindmark G. Magnesium and zinc in diabetic pregnancy. Acta Paediatr. Scand. Suppl. 1985;320:100–106. doi: 10.1111/j.1651-2227.1985.tb10146.x.
    1. Al-Saleh E., Nandakumaran M., Al-Shammari M., Al-Harouny A. Maternal-fetal status of copper, iron, molybdenum, selenium and zinc in patients with gestational diabetes. J. Matern. Fetal Neonatal Med. 2004;16:15–21. doi: 10.1080/14767050412331283139.
    1. Prema K., Ramalakshmi B.A., Babu S. Serum copper and zinc in hormonal contraceptive users. Fertil. Steril. 1980;33:267–271. doi: 10.1016/S0015-0282(16)44591-7.
    1. Kristal A.R., Peters U., Potter J.D. Is it time to abandon the food frequency questionnaire? Cancer Epidemiol. Biomark. Prev. 2005;14:2826–2828. doi: 10.1158/1055-9965.EPI-12-ED1.
    1. Jackson M. Zinc in Human Biology. Springer; London, UK: 1989. Physiology of zinc: General aspects; pp. 1–14.
    1. Goode H.F., Kelleher J., Walker B.E. The effects of acute infection on indices of zinc status. Clin. Nutr. 1991;10:55–59. doi: 10.1016/0261-5614(91)90082-N.
    1. Halsted J.A., Hackley B.M., Smith J.C., Jr. Plasma-zinc and copper in pregnancy and after oral contraceptives. Lancet. 1968;2:278–279. doi: 10.1016/S0140-6736(68)92375-1.
    1. Prasad A.S. Clinical, endocrinological and biochemical effects of zinc deficiency. Clin. Endocrinol. Metab. 1985;14:567–589. doi: 10.1016/S0300-595X(85)80007-4.
    1. Singh A., Smoak B.L., Patterson K.Y., LeMay L.G., Veillon C., Deuster P.A. Biochemical indices of selected trace minerals in men: Effect of stress. Am. J. Clin. Nutr. 1991;53:126–131.
    1. Moran V.H., Skinner A.L., Medina M.W., Patel S., Dykes F., Souverein O.W., Dullemeijer C., Lowe N.M. The relationship between zinc intake and serum/plasma zinc concentration in pregnant and lactating women: A systematic review with dose-response meta-analyses. J. Trace Elem. Med. Biol. 2012;26:74–79. doi: 10.1016/j.jtemb.2012.04.003.
    1. Benes B., Spevackova V., Smid J., Batariova A., Cejchanova M., Zitkova L. Effects of age, BMI, smoking and contraception on levels of Cu, Se and Zn in the blood of the population in the Czech Republic. Cent. Eur. J. Public Health. 2005;13:202–207.
    1. Ghayour-Mobarhan M., Taylor A., New S.A., Lamb D.J., Ferns G.A. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem. 2005;42:364–375. doi: 10.1258/0004563054889990.
    1. North R.A., McCowan L.M., Dekker G.A., Poston L., Chan E.H., Stewart A.W., Black M.A., Taylor R.S., Walker J.J., Baker P.N., et al. Clinical risk prediction for pre-eclampsia in nulliparous women: Development of model in international prospective cohort. BMJ. 2011;342:d1875. doi: 10.1136/bmj.d1875.
    1. Kenny L.C., Black M.A., Poston L., Taylor R., Myers J.E., Baker P.N., McCowan L.M., Simpson N.A., Dekker G.A., Roberts C.T., et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: The Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension. 2014;64:644–652. doi: 10.1161/HYPERTENSIONAHA.114.03578.
    1. Brown K.H., Rivera J.A., Bhutta Z., Gibson R.S., King J.C., Lonnerdal B., Ruel M.T., Sandtrom B., Wasantwisut E., Hotz C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004;25:S99–S203.
    1. Burton G.J., Jauniaux E. Placental oxidative stress: From miscarriage to preeclampsia. J. Soc. Gynecol. Investig. 2004;11:342–352. doi: 10.1016/j.jsgi.2004.03.003.
    1. Marklund S. Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiol. Scand. Suppl. 1980;492:19–23.
    1. Bruno R.S., Song Y., Leonard S.W., Mustacich D.J., Taylor A.W., Traber M.G., Ho E. Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J. Nutr. Biochem. 2007;18:509–518. doi: 10.1016/j.jnutbio.2006.09.001.
    1. Oteiza P.I., Clegg M.S., Zago M.P., Keen C.L. Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells. Free Radic. Biol. Med. 2000;28:1091–1099. doi: 10.1016/S0891-5849(00)00200-8.
    1. Prasad A.S., Beck F.W., Bao B., Fitzgerald J.T., Snell D.C., Steinberg J.D., Cardozo L.J. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007;85:837–844.
    1. Sankavaram K., Chong L., Bruno R.S., Freake H.C. Zinc status alters growth and oxidative stress responses in rat hepatoma cells. Nutr. Cancer. 2014;66:104–116. doi: 10.1080/01635581.2014.851713.
    1. Song Y., Leonard S.W., Traber M.G., Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J. Nutr. 2009;139:1626–1631. doi: 10.3945/jn.109.106369.
    1. Habib Z., Abdulla M. Plasma levels of zinc, copper, magnesium and calcium during early weeks of gestation. Acta Pharmacol. Toxicol. 1986;59(Suppl. 7):602–605. doi: 10.1111/j.1600-0773.1986.tb02835.x.
    1. Donangelo C.M., Zapata C.L., Woodhouse L.R., Shames D.M., Mukherjea R., King J.C. Zinc absorption and kinetics during pregnancy and lactation in Brazilian women. Am. J. Clin. Nutr. 2005;82:118–124.
    1. Fung E.B., Ritchie L.D., Woodhouse L.R., Roehl R., King J.C. Zinc absorption in women during pregnancy and lactation: A longitudinal study. Am. J. Clin. Nutr. 1997;66:80–88.
    1. Sherwood L. Human Physiology: From Cells to Systems. Cengage Learning; Boston, MA, USA: 2015.
    1. Bowen J.M., Chamley L., Keelan J.A., Mitchell M.D. Cytokines of the placenta and extra-placental membranes: Roles and regulation during human pregnancy and parturition. Placenta. 2002;23:257–273. doi: 10.1053/plac.2001.0782.
    1. Allen L.H. Multiple micronutrients in pregnancy and lactation: An overview. Am. J. Clin. Nutr. 2005;81:1206S–1212S.
    1. Christian P., West K.P., Jr. Interactions between zinc and vitamin A: An update. Am. J. Clin. Nutr. 1998;68:435S–441S.
    1. Lonnerdal B. Dietary factors influencing zinc absorption. J. Nutr. 2000;130:1378S–1383S.
    1. Solomons N.W. Competitive interaction of iron and zinc in the diet: Consequences for human nutrition. J. Nutr. 1986;116:927–935.

Source: PubMed

3
購読する