International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials

Caroline Hoemann, Rita Kandel, Sally Roberts, Daniel B F Saris, Laura Creemers, Pierre Mainil-Varlet, Stephane Méthot, Anthony P Hollander, Michael D Buschmann, Caroline Hoemann, Rita Kandel, Sally Roberts, Daniel B F Saris, Laura Creemers, Pierre Mainil-Varlet, Stephane Méthot, Anthony P Hollander, Michael D Buschmann

Abstract

Cartilage repair strategies aim to resurface a lesion with osteochondral tissue resembling native cartilage, but a variety of repair tissues are usually observed. Histology is an important structural outcome that could serve as an interim measure of efficacy in randomized controlled clinical studies. The purpose of this article is to propose guidelines for standardized histoprocessing and unbiased evaluation of animal tissues and human biopsies. Methods were compiled from a literature review, and illustrative data were added. In animal models, treatments are usually administered to acute defects created in healthy tissues, and the entire joint can be analyzed at multiple postoperative time points. In human clinical therapy, treatments are applied to developed lesions, and biopsies are obtained, usually from a subset of patients, at a specific time point. In striving to standardize evaluation of structural endpoints in cartilage repair studies, 5 variables should be controlled: 1) location of biopsy/sample section, 2) timing of biopsy/sample recovery, 3) histoprocessing, 4) staining, and 5) blinded evaluation with a proper control group. Histological scores, quantitative histomorphometry of repair tissue thickness, percentage of tissue staining for collagens and glycosaminoglycan, polarized light microscopy for collagen fibril organization, and subchondral bone integration/structure are all relevant outcome measures that can be collected and used to assess the efficacy of novel therapeutics. Standardized histology methods could improve statistical analyses, help interpret and validate noninvasive imaging outcomes, and permit cross-comparison between studies. Currently, there are no suitable substitutes for histology in evaluating repair tissue quality and cartilaginous character.

Keywords: animal models; articular cartilage; biopsy; cartilage repair; collagen type I; collagen type II; fibrocartilage; glycosaminoglycan; histology; polarized light microscopy; subchondral bone; tidemark.

Conflict of interest statement

Declaration of Conflicting Interests: S. Méthot is an employee of Piramal Healthcare. None of the other authors has any conflicts or apparent conflicts of interest to declare in relation to this article.

Figures

Figure 1.
Figure 1.
Different features of the osteochondral junction in normal and repair cartilage are revealed by hematoxylin and eosin (H & E) (A, C, E, G) and Safranin O/fast green/iron hematoxylin (SafO) (B, D, F, H). In normal human cartilage (A and B, adult hip surgical waste, femoral neck fracture), H&E clearly stains the tidemark (A, white arrows), while SafO readily discriminates cartilage from fast green–stained bone (below the black arrows, B). For heterogeneous human repair cartilage (C and D, biopsy taken 1 year postmicrofracture,), H&E is better for determining the cartilage-bone boundary (black arrows, C) and abnormal mineralization (dashed circle), while SafO discriminates fibrocartilage from fast green–stained fibrous repair and bone (D). In hyaline cartilage repair elicited in a sheep model (E-H, 6 months posttreatment), the tidemark is beginning to form (white arrows, 10x magnification for E and F, 40x magnification for G and H). White arrows = tidemark; black arrows = cartilage-bone interface; AC = articular cartilage; cc = calcified cartilage; FC = fibrocartilage; HC = hyaline cartilage; b = bone.
Figure 2.
Figure 2.
Appearance of human 2-mm-diameter biopsy obtained with a Jamshidi 11-gauge needle (A, C) and corresponding decalcified Safranin O–stained paraffin section (B, D). Samples were obtained ex vivo with an ethics-approved protocol from the same lateral condyle (nonlesional area) obtained after total knee arthroplasty (74-year-old female). (A and B) A biopsy cored perpendicular to the surface and (C and D) a biopsy cored deliberately at an oblique angle to the surface are shown. Both biopsies were initially 6 mm long, but the subchondral bone was missing from the oblique biopsy prior to histoprocessing (C). Part of the subchondral bone in the perpendicular biopsy (B) was lost during histoprocessing.
Figure 3.
Figure 3.
Histoprocessing and histomorphometry of large animal defects. The example is taken from a sheep cartilage repair model (6 months repair). In this unilateral cartilage repair model, the repaired defect (top panels) was decalcified, trimmed at 2 levels in the defect (midproximal and middistal), and stained with Safranin O/Fast Green. Repair tissue above the projected tidemark was cropped using histomorphometric software, and total area (TA) and total stained repair tissue area (TS) were used to determine percentage of Safranin O–stained repair. The contralateral intact condyle was decalcified, trimmed through the middle, and cropped with matching defect width, and total area was used to determine percentage fill of the defect with repair tissue.
Figure 4.
Figure 4.
Example of standardized histoprocessing to evaluate a human biopsy (A-D, from cadaveric knee medial femoral condyle) or sheep hyaline repair cartilage 6-month repair after treatment with microfracture and chitosan-GP/blood implant (E-H). Sections were stained for Safranin O, immunostained for collagen type II and collagen type I, and observed by polarized light microscopy (PLM). SZ = superficial zone; DZ = deep zone; AC = articular cartilage. Note the abnormal vascular invasion and mineralization (*) in this particular human biopsy above the tidemark (horizontal arrow, A-D), which is frequently observed in osteoarthritis.
Figure 5.
Figure 5.
Histomorphometry of chondral versus subchondral soft repair tissues. The example is from a 2-month repair of a trochlear full-thickness rabbit knee defect with two 0.9-mm microdrill holes. (A) Safranin O–stained trochlear repair tissue, with the “projected tidemark” drawn through the defect area. (B) The chondral repair is cropped separately from the subchondral soft tissue repair for further histomorphometric analysis.

References

    1. Alford JW, Cole BJ. Cartilage restoration, part 2: techniques, outcomes, and future directions. Am J Sports Med. 2005;33(3):443-60.
    1. Mithoefer K, McAdams TR, Scopp JM, Mandelbaum BR. Emerging options for treatment of articular cartilage injury in the athlete. Clin Sports Med. 2009;28(1):25-40.
    1. Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91A(7):1778-90.
    1. Bedi A, Feeley BT, Williams RJ. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92A(4):994-1009.
    1. van Osch G, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, Luyten FP. Cartilage repair: past and future. Lessons for regenerative medicine. J Cell Mol Med. 2009;13(5):792-810.
    1. McFarland R, Kaiser A. Guidance for industry: preparation of IDEs and INDs for products intended to repair or replace knee cartilage. Rockville, MD: U.S. Department of Health and Human Services; 2007. Available from:
    1. FDA. 38th meeting, topic I: Cellular, Tissue, and Gene Therapies Advisory Committee. Rockville, MD: U.S. Food and Drug Administration; 2005. Available from:
    1. Hollander AP, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole AR. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest. 1995;96(6):2859-69.
    1. Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med. 1974;291(24):1285-92.
    1. Sabatini M, Lesur C, Thomas M, Chomel A, Anract P, de Nanteuil G, Pastoureau P. Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis. Arthritis Rheum. 2005;52(1):171-80.
    1. Pastoureau P, Hunziker E, Pelletier JP. Cartilage bone and synovial histomorphometry in animal models of osteoarthritis. Osteoarthritis Cartilage. 2010;18:S106-12.
    1. Kraus VB, Nevitt M, Sandell LJ. Summary of the OA biomarkers workshop 2009 biochemical biomarkers: biology, validation, and clinical studies. Osteoarthritis Cartilage. 2010;18(6):742-5.
    1. Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II: correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53(3):523-37.
    1. Hoemann CD. Molecular and biochemical assays of cartilage components. In: De Ceuninck F, Sabatini M, Pastoureau P, editors. Cartilage and osteoarthritis. Totowa, NJ: Humana Press; 2004:127-156.
    1. Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage. 2002;10(7):564-72.
    1. Li LP, Buschmann MD, Shirazi-Adl A. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech. 2000;33(12):1533-41.
    1. Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am. 1982;64(1):88-94.
    1. Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res. 2000;18(5):739-48.
    1. Laasanen MS, Toyras J, Korhonen RK, Rieppo J, Saarakkala S, Nieminen MT, et al. Biomechanical properties of knee articular cartilage. Biorheology. 2003;40(1-3):133-40.
    1. Legare A, Garon M, Guardo R, Savard P, Poole AR, Buschmann MD. Detection and analysis of cartilage degeneration by spatially resolved streaming potentials. J Orthop Res. 2002;20(4):819-26.
    1. Rieppo J, Hyttinen MM, Halmesmaki E, Ruotsalainen H, Vasara A, Kiviranta I, et al. Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthritis Cartilage. 2009;17(4):448-55.
    1. Changoor A, Tran-Khanh N, Methot S, Garon M, Hurtig M, Shive MS, Buschmann MB. A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair. Osteoarthritis Cartilage. 2011;19(1):126-35.
    1. Gilmore RS, Palfrey AJ. A histological study of human femoral condylar articular cartilage. J Anat. 1987;155:77-85.
    1. Wang FY, Ying Z, Duan XJ, Tan HB, Yang B, Guo L, et al. Histomorphometric analysis of adult articular calcified cartilage zone. J Struct Biol. 2009;168(3):359-65.
    1. Gannon JM, Walker G, Fischer M, Carpenter R, Thompson RC, Oegema TR. Localization of Type-X collagen in canine growth plate and adult canine articular-cartilage. J Orthop Res. 1991;9(4):485-94.
    1. Oegema TR, Carpenter RJ, Hofmeister F, Thompson RC. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech. 1997;37(4):324-32.
    1. Gomoll A, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434-47.
    1. Madry H. The subchondral bone: a new frontier in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):417-8.
    1. Madry H, van Dijk C, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419-33.
    1. Johnson DL, Urban WP, Caborn DNM, Vanarthos WJ, Carlson CS. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med. 1998;26(3):409-14.
    1. Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech. 1997;37(4):343-57.
    1. Wei XC, Messner K. Maturation-dependent durability of spontaneous cartilage repair in rabbit knee joint. J Biomed Mater Res. 1999;46(4):539-48.
    1. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75A(4):532-53.
    1. Shamis LD, Bramlage LR, Gabel AA, Weisbrode S. Effect of subchondral drilling on repair of partial-thickness cartilage defects of third carpal bones in horses. Am J Vet Res. 1989;50(2):290-5.
    1. Breinan HA, Martin SD, Hsu HP, Spector M. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res. 2000;18(5):781-9.
    1. Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28(4):242-55.
    1. Jackson DW, Lalor PA, Aberman HM, Simon TM. Spontaneous repair of full-thickness defects of articular cartilage in a goat model: a preliminary study. J Bone Joint Surg Am. 2001;83A(1):53-64.
    1. Gill TJ, McCulloch PC, Glasson SS, Blanchet T, Morris EA. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med. 2005;33(5):680-5.
    1. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927-37.
    1. Vachon AM, McIlwraith CW, Keeley FW. Biochemical-study of repair of induced osteochondral defects of the distal portion of the radial carpal bone in horses by use of periosteal autografts. Am J Vet Res. 1991;52(2):328-32.
    1. O’Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion: a follow-up report at one year. J Bone Joint Surg Am. 1988;70(4):595-606.
    1. Hurtig MB, Fretz PB, Doige CE, Schnurr DL. Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res. 1988;52(1):137-46.
    1. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am. 2005;87A(12):2671-86.
    1. Hoemann CD, Chen G, Marchand C, Sun J, Tran-Khanh N, Chevrier A, et al. Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages. Am J Sports Med. 2010;38(9):1845-56.
    1. Driesang IM, Hunziker EB. Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res. 2000;18(6):909-11.
    1. Dell’Accio F, Vanlauwe J, Bellemans J, Neys J, De Bari C, Luyten FP. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res. 2003;21(1):123-31.
    1. Chen G, Sun J, Lascau-Coman V, Chevrier A, Marchand C, Hoemann CD. Acute osteoclast activity following subchondral drilling is promoted by chitosan and associated with improved cartilage tissue integration. Cartilage. In press.
    1. Mainil-Varlet P, Rieser F, Grogan S, Mueller W, Saager C, Jakob RP. Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. Osteoarthritis Cartilage. 2001;9:S6-15.
    1. Erggelet C, Neumann K, Endres M, Haberstroh K, Sittinger M, Kaps C. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials. 2007;28(36):5570-80.
    1. Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials. 2005;26(17):3617-29.
    1. Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects: an experimental study in horses. Clin Orthop Relat Res. 1972;82:253-62.
    1. Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage. 2007;15(3):316-27.
    1. Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, et al. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003;407:215-27.
    1. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432-63.
    1. Rutgers M, van Pelt MJP, Dhert WJA, Creemers LB, Saris DBF. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoarthritis Cartilage. In press.
    1. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, et al. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg Am. 2004;86A(3):455-64.
    1. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. J Bone Joint Surg Am. 2007;89A(10):2105-12.
    1. Brun P, Dickinson S, Zavan B, Cortivo R, Hollander A, Abatangelo G. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther. 2008;10(6):R132.
    1. Gikas PD, Morris T, Carrington R, Skinner J, Bentley G, Briggs T. A correlation between the timing of biopsy after autologous chondrocyte implantation and the histological appearance. J Bone Joint Surg Br. 2009;91B(9):1172-7.
    1. Mainil-Varlet P, van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med. 2010;38(5):880-90.
    1. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36(2):235-46.
    1. Briggs TWR, Mahroof S, David LA, Flannelly DJ, Pringle J, Bayliss M. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee. J Bone Joint Surg Br. 2003;85B(7):1077-83.
    1. Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med. 2006;34(11):1824-31.
    1. Insall JN. Intra-articular surgery for degenerative arthritis of the knee: a report of the work of the late K. H. Pridie. J Bone Joint Surg Br. 1967;49(2):211-28.
    1. Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res. 1979;144:74-83.
    1. Bouwmeester P, Kuijer R, Terwindt-Rouwenhorst E, van der Linden T, Bulstra K. Histological and biochemical evaluation of perichondrial transplants in human articular cartilage defects. J Orthop Res. 1999;17(6):843-9.
    1. Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop. 1999;365:149-62.
    1. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am. 2003;85A:45-57.
    1. Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee. 2009;16(5):398-404.
    1. Hollander AP, Dickinson SC, Sims TJ, Brun P, Cortivo R, Kon E, et al. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng. 2006;12(7):1787-98.
    1. ClinicalTrials. A Randomized, Comparative Multicenter Clinical Trial Evaluating BST-CarGel™ and Microfracture in Repair of Focal Articular Cartilage Lesions on the Femoral Condyle. Montreal, Canada: NCT00314236 CgI; 2007. Available from: .
    1. Moriya T, Wada Y, Watanabe A, Sasho T, Nakagawa K, Mainil-Varlet P, Moriya H. Evaluation of reparative cartilage after autologous chondrocyte implantation for osteochondritis dissecans: histology, biochemistry, and MR imaging. J Orthop Sci. 2007;12(3):265-73.
    1. Peterfy CG, Guermazi A, Zaim S, Tirman , Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177-90.
    1. Mithoefer K, Williams RJ, 3rd, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee: a prospective cohort study. J Bone Joint Surg Am. 2005;87(9):1911-20.
    1. Watanabe A, Wada Y, Obata T, Ueda T, Tamura M, Ikehira H, Moriya H. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201-8.
    1. Tins BJ, McCall IW, Takahashi T, Cassar-Pullicino V, Roberts S, Ashton B, Richardson J. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology. 2005;234(2):501-8.
    1. Mithoefer K, Saris DBF, Farr J, Kon E, Zaslav K, Cole BJ, et al. Guidelines for the design and conduct of clinical studies in knee articular cartilage repair: international cartilage repair society recommendations based on current scientific evidence and standards of clinical care. Cartilage 2(2). DOI: 10.1177/1947603510392913.
    1. Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG. Magnetic resonance imaging of cartilage repair: a review. Cartilage 2011;2:5-26.
    1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456-60.
    1. Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper Tech Orthop. 1997;7(4):300-4.
    1. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889-95.
    1. Shive MS, Hoemann CD, Restrepo A, Hurtig MB, Duval N, Ranger P, et al. BST-CarGel: in situ chondroinduction for cartilage repair. Oper Tech Orthop. 2006;16(4):271-8.
    1. Henderson I, Francisco R, Oakes B, Cameron J. Autologous chondrocyte implantation for treatment of focal chondral defects of the knee: a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee. 2005;12(3):209-16.
    1. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, et al. Articular cartilage engineering with Hyalograft (R) C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96-105.
    1. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85(Suppl 2):17.
    1. Henderson I, Lavigne P, Valenzuela H, Oakes B. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res. 2007;455:253-61.
    1. Vasara AI, Hyttinen MM, Lammi MJ, Lammi PE, Langsjo TK, Lindahl A, et al. Subchondral bone reaction associated with chondral defect and attempted cartilage repair in goats. Calcif Tissue Int. 2004;74(1):107-14.
    1. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM. Mesenchymal cell-based repair of.large, full-thickness defects of articular-cartilage. J Bone Joint Surg Am. 1994;76A(4):579-92.
    1. Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage. 2007;15(1):78-89.
    1. Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326:270-83.
    1. Ahern BJ, Parvizi J, Boston R, Schaer TP. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage. 2009;17(6):705-13.
    1. Frisbie DD, Cross MW, McIlwraith CW.A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol. 2006;19(3):142-6.
    1. Temple MM, Bae WC, Chen MQ, Lotz M, Amiel D, Coufts RD, Sah RL. Age- and site-associated biomechanical weakening of human articular cartilage of the femoral condyle. Osteoarthritis Cartilage. 2007;15(9):1042-52.
    1. Nixon AJ, Fortier LA, Williams J, Mohammed H. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res. 1999;17(4):475-87.
    1. Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am. 1997;79(10):1439-51.
    1. Roberts S, McCall I, Darby A, Menage J, Evans H, Harrison P, Richardson J. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):R60-73.
    1. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. J Bone Joint Surg Am. 2003;85A(2):185-92.
    1. Saris DBF, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37:10S-19S.
    1. Bartlett W, Skinner JA, Gooding CR, Carrington RWJ, Flanagan AM, Briggs TWR, Bentley G. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. J Bone Joint Surg Br. 2005;87B(5):640-5.
    1. Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, Lust G. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular-cartilage defects. J Orthop Res. 1994;12(4):485-97.
    1. Hurtig M, Buschmann MD, Fortier L, Hoemann CD, Hunziker EB, Jurvelin JS, et al. Pre-Clinical Studies for Cartilage Repair: Recommendations from the International Cartilage Repair Society. In Press.
    1. Pineda S, Pollack A, Stevenson S, Goldberg V, Caplan A. A semiquantitative scale for histologic grading of articular-cartilage repair. Acta Anatomica. 1992;143(4):335-40.
    1. Selmi TAS, Verdonk P, Chambat P, Dubrana F, Potel JF, Barnouin L, Neyret P. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J Bone Joint Surg Br. 2008;90-B(5):597-604.
    1. Henderson IJP, Tuy B, Connell D, Oakes B, Hettwer WH. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br. 2003;85B(7):1060-6.
    1. Kristensen HK. An improved method of decalcification. Stain Technol. 1948;23(3):151-4.
    1. Hunziker EB, Michel M, Studer D. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc Res Tech. 1997;37(4):271-84.
    1. Chevrier A, Rossomacha E, Buschmann MD, Hoemann CD. Optimization of histoprocessing methods to detect glycosaminoglycan, collagen type II, and collagen type I in decalcified rabbit osteochondral sections. J Histotechnol. 2005;28(3):165-75.
    1. Rosen AD. End-point determination in EDTA decalcification using ammonium oxalate. Stain Technol. 1981;56(1):48-9.
    1. Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW. Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage. 2003;11(11):810-20.
    1. Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage. 2005;13(4):318-29.
    1. Niederauer GG, Slivka MA, Leatherbury NC, Korvick DL, Harroff HH, Ehler WC, et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials. 2000;21(24):2561-74.
    1. Griffiths G. Quantitative aspects of immunocytochemistry: Estimation of volume density and surface density in practice. In: Griffiths G, editor. Fine structure immunocytochemistry. 377-383 Berlin: Springer-Verlag; 1993.
    1. Rosenberg L. Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am. 1971;53(1):69-82.
    1. Bulstra SK, Drukker J, Kuijer R, Buurman WA, Vanderlinden AJ. Thionin staining of paraffin and plastic embedded sections of cartilage. Biotech Histochem. 1993;68(1):20-8.
    1. Hoemann CD, Tran-Khanh N, Lascau-Coman V, Garon M, Chen H, Jarry C, et al. Quantitative histomorphometry of collagen types I & II and safranin-O in human osteochondral biopsies. Miami: 2009 Conference Proceedings of the International Cartilage Repair Society.
    1. Zhu Y, Oganesian A, Keene DR, Sandell LJ. Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta 1 and BMP-2. J Cell Biol. 1999;144(5):1069-80.
    1. Roberts S, Hollander AP, Caterson B, Menage J, Richardson JB. Matrix turnover in human cartilage repair tissue in autologous chondrocyte implantation. Arthritis Rheum. 2001;44(11):2586-98.
    1. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, et al. Microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006;22(11):1180-6.
    1. Temple-Wong MM, Bae WC, Chen MQ, Bugbee WD, Amiel D, Coutts RD, et al. Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarthritis Cartilage. 2009;17(11):1469-76.
    1. von Rechenberg B, Akens MK, Nadler D, Bittmann P, Zlinszky K, Kutter A, et al. Changes in subchondral bone in cartilage resurfacing: an experimental study in sheep using different types of osteochondral grafts. Osteoarthritis Cartilage. 2003;11(4):265-77.
    1. Méthot S, Hoemann CD, Rossomacha E, Restrepo A, Stanish WD, MacDonald P, et al. ICRS histology scores of biopsies from an interim analysis of a randomized controlled clinical trial show significant improvement in tissue quality at 13 months for BST-CarGel versus microfracture. Barcelona: 2010 Conference Proceedings of the International Cartilage Repair Society.
    1. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420-8.
    1. Roos EM, Engelhart L, Ranstam J, Anderson AF, Irrgang JJ, Marx RG, Tegner Y, Davis AM. ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage 1947603510391084, first published on January 25, 2011 as 10.1177/1947603510391084.
    1. O’Driscoll SW, Marx RG, Beaton DE, Miura Y, Gallay SH, Fitzsimmons JS. Validation of a simple histological- histochemical cartilage scoring system. Tissue Eng. 2001;7(3):313-20.
    1. Igarashi T, Iwasaki N, Kasahara Y, Minami A. A cellular implantation system using an injectable ultra-purified alginate gel for repair of osteochondral defects in a rabbit model. J Biomed Mater Res A. 2010;94A(3):844-55.
    1. Hoemann CD, Tran-Khanh N, Méthot S, Chen G, Marchand C, Lascau-Coman V, et al. Correlation of tissue histomorphometry with ICRS histology scores in biopsies obtained from a randomized controlled clinical trial comparing BST-CarGel versus microfracture. Barcelona: 2010 Conference Proceedings of the International Cartilage Repair Society.
    1. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37:902-8.
    1. Rieppo J, Toyras J, Nieminen MT, Kovanen V, Hyttinen MM, Korhonen RK, et al. Structure-function relationships in enzymatically modified articular cartilage. Cells Tissues Organs. 2003;175(3):121-32.

Source: PubMed

3
購読する