Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

Samar M Hatem, Geoffroy Saussez, Margaux Della Faille, Vincent Prist, Xue Zhang, Delphine Dispa, Yannick Bleyenheuft, Samar M Hatem, Geoffroy Saussez, Margaux Della Faille, Vincent Prist, Xue Zhang, Delphine Dispa, Yannick Bleyenheuft

Abstract

Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

Keywords: paresis; rehabilitation; review; stroke; systematic review; upper extremity.

Figures

Figure 1
Figure 1
Hypothetical pattern of recovery after stroke with timing of intervention strategies. The neurological recovery after stroke displays a nonlinear, logarithmic pattern. The greater part of recovery is reported to take place in the first three months following stroke. Rehabilitation interventions targeting at improving a stroke patients' performance should be implemented according to the phase of neurological recovery. Reprinted from Langhorne et al. (2011), Copyright [2011] by Elsevier. Reprinted with permission.
Figure 2
Figure 2
Suggested sequence of tests to predict the recovery of motor function in patients with subacute stroke (weeks after stroke). Although this particular algorithm requires validation, it illustrates a potentially efficient progression from simple to more complex predictive measures. SAFE, sum of muscle force on shoulder abduction and finger extension according to Medical Research Council muscle grades at 72 h after stroke; TMS, transcranial magnetic stimulation; MEP, motor evoked potentials in the affected upper limb; Asymmetry index, asymmetry index of fractional anisotropy in the posterior limbs of the internal capsules measured with diffusion-weighted MRI. From Stinear et al. (2014).
Figure 3
Figure 3
PRISMA diagram reporting the flowchart, exclusion criteria, and stages of the systematic review.
Figure 4
Figure 4
Decisional tree for upper extremity rehabilitation after stroke based on the conclusions of the multiple systematic review. Abbreviations: SSRI, selective serotonin reuptake inhibitor; NARI, noradrenalin reuptake inhibitor; CIMT, constraint-induced movement therapy; mCIMT, modified constraint-induced movement therapy; tDCS, transcranial direct current stimulation; rTMS, repetitive transcranial magnetic stimulation, NMES, neuromuscular electrical stimulation, TENS, transcutaneous electrical nerve stimulation.

References

    1. Ackerley S. J., Stinear C. M., Barber P. A., Byblow W. D. (2010). Combining theta burst stimulation with training after subcortical stroke. Stroke 41, 1568–1572. 10.1161/STROKEAHA.110.583278
    1. Ackerley S. J., Stinear C. M., Barber P. A., Byblow W. D. (2014). Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clin. Neurophysiol. 125, 1451–1458. 10.1016/j.clinph.2013.11.020
    1. Acler M., Robol E., Fiaschi A., Manganotti P. (2009). A double blind placebo rct to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J. Neurol. 256, 1152–1158. 10.1007/s00415-009-5093-7
    1. Ada L., Canning C. (eds.). (1990). Anticipating and avoiding muscle shortening, in Key Issues in Neurological Physiotherapy (Oxford: Butterworth-Heinemann; ), 219–236.
    1. Adeyemo B. O., Simis M., Macea D. D., Fregni F. (2012). Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front. Psychiatry 3:88. 10.3389/fpsyt.2012.00088
    1. Aisen M. L., Krebs H. I., Hogan N., McDowell F., Volpe B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch. Neurol. 54, 443–446. 10.1001/archneur.1997.00550160075019
    1. Altenmüller E., Marco-Pallares J., Münte T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N.Y. Acad. Sci. 1169, 395–405. 10.1111/j.1749-6632.2009.04580.x
    1. Altschuler E. L., Wisdom S. B., Stone L., Foster C., Galasko D., Llewellyn D. M., et al. . (1999). Rehabilitation of hemiparesis after stroke with a mirror. Lancet 353, 2035–2036. 10.1016/S0140-6736(99)00920-4
    1. Ang K. K., Guan C., Phua K. S., Wang C., Zhao L., Teo W. P., et al. . (2015). Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch. Phys. Med. Rehabil. 96, (Supp. l), S79–S87. 10.1016/j.apmr.2014.08.008
    1. Ausenda C., Carnovali M. (2011). Transfer of motor skill learning from the healthy hand to the paretic hand in stroke patients: a randomized controlled trial. Eur. J. Phys. Rehabil. Med. 47, 417–425.
    1. Au-Yeung S. S., Wang J., Chen Y., Chua E. (2014). Transcranial direct current stimulation to primary motor area improves hand dexterity and selective attention in chronic stroke. Am. J. Phys. Med. Rehabil. 93, 1057–1064. 10.1097/PHM.0000000000000127
    1. Bajaj S., Butler A. J., Drake D., Dhamala M. (2015a). Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. Neuroimage 8, 572–582. 10.1016/j.nicl.2015.06.006
    1. Bajaj S., Butler A. J., Drake D., Dhamala M. (2015b). Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation. Front. Hum. Neurosci. 9:173. 10.3389/fnhum.2015.00173
    1. Ballinger C., Ashburn A., Low J., Roderick P. (1999). Unpacking the black box of therapy – a pilot study to describe occupational therapy and physiotherapy interventions for people with stroke. Clin. Rehabil. 13, 301–309. 10.1191/026921599673198490
    1. Barclay-Goddard R. E., Stevenson T. J., Poluha W., Thalman L. (2011). Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst. Rev. 5:Cd005950. 10.1002/14651858.CD005950.pub4
    1. Bastani A., Jaberzadeh S. (2012). Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. Clin. Neurophysiol. 123, 644–657. 10.1016/j.clinph.2011.08.029
    1. Berends H. I., Nijlant J. M., Movig K. L., Van Putten M. J., Jannink M. J., Ijzerman M. J. (2009). The clinical use of drugs influencing neurotransmitters in the brain to promote motor recovery after stroke; a cochrane systematic review. Eur. J. Phys. Rehabil. Med. 45, 621–630.
    1. Bikson M., Datta A., Elwassif M. (2009). Establishing safety limits for transcranial direct current stimulation. Clin. Neurophysiol. 120, 1033–1034. 10.1016/j.clinph.2009.03.018
    1. Bleyenheuft Y., Gordon A. M. (2014). Precision grip in congenital and acquired hemiparesis: similarities in impairments and implications for neurorehabilitation. Front. Hum. Neurosci. 8:459. 10.3389/fnhum.2014.00459
    1. Bobath B. (1990). Adult Hemiplegia: Evaluation and Treatment, 3rd Edn. Oxford: Heinemann; Medical Books.
    1. Bolton D. A., Cauraugh J. H., Hausenblas H. A. (2004). Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis. J. Neurol. Sci. 223, 121–127. 10.1016/j.jns.2004.05.005
    1. Bonita R., Beaglehole R. (1988). Recovery of motor function after stroke. Stroke 19, 1497–1500. 10.1161/01.STR.19.12.1497
    1. Bowman B. R., Baker L. L., Waters R. L. (1979). Positional feedback and electrical stimulation: an automated treatment for the hemiplegic wrist. Arch. Phys. Med. Rehabil. 60, 497–502.
    1. Bradt J., Magee W. L., Dileo C., Wheeler B. L., McGilloway E. (2010). Music therapy for acquired brain injury. Cochrane Database Syst. Rev. 7:Cd006787. 10.1002/14651858.CD006787.pub2
    1. Brashear A., Gordon M. F., Elovic E., Kassicieh V. D., Marciniak C., Do M., et al. . (2002). Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke. N. Engl. J. Med. 347, 395–400. 10.1056/NEJMoa011892
    1. Burgar C. G., Lum P. S., Scremin A. M., Garber S. L., Van der Loos H. F., Kenney D., et al. . (2011). Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: department of veterans affairs multisite clinical trial. J. Rehabil. Res. Dev. 48, 445–458. 10.1682/JRRD.2010.04.0062
    1. Butler A. J., Shuster M., O'Hara E., Hurley K., Middlebrooks D., Guilkey K. (2013). A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. J. Hand. Ther. 26, 162–170. 10.1016/j.jht.2012.07.002
    1. Cameirão M. S., Badia S. B., Duarte E., Frisoli A., Verschure P. F. (2012). The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 43, 2720–2728. 10.1161/STROKEAHA.112.653196
    1. Carey L. M., Matyas T. A., Oke L. E. (1993). Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Arch. Phys. Med. Rehabil. 74, 602–611. 10.1016/0003-9993(93)90158-7
    1. Carr J. H., Shepherd R. B. (2011). Enhancing physical activity and brain reorganization after stroke. Neurol. Res. Int. 2011:515938. 10.1155/2011/515938
    1. Chan A. K., Finlayson H., Mills P. B. (2016). Does the method of botulinum neurotoxin injection for limb spasticity affect outcomes? A systematic review. Clin. Rehabil. [Epub ahead of print]. 10.1177/0269215516655589
    1. Chang W. H., Kim Y. H. (2013). Robot-assisted therapy in stroke rehabilitation. J. Stroke 15, 174–181. 10.5853/jos.2013.15.3.174
    1. Chanubol R., Wongphaet P., Chavanich N., Werner C., Hesse S., Bardeleben A., et al. . (2012). A randomized controlled trial of cognitive sensory motor training therapy on the recovery of arm function in acute stroke patients. Clin. Rehabil. 26, 1096–1104. 10.1177/0269215512444631
    1. Charles J., Gordon A. M. (2006). Development of hand-arm bimanual intensive training (habit) for improving bimanual coordination in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol. 48, 931–936. 10.1017/S0012162206002039
    1. Chen Y., Guo J. J., Zhan S., Patel N. C. (2006). Treatment effects of antidepressants in patients with post-stroke depression: a meta-analysis. Ann. Pharmacother. 40, 2115–2122. 10.1345/aph.1H389
    1. Childers M. K., Brashear A., Jozefczyk P., Reding M., Alexander D., Good D., et al. . (2004). Dose-dependent response to intramuscular botulinum toxin type a for upper-limb spasticity in patients after a stroke. Arch. Phys. Med. Rehabil. 85, 1063–1069. 10.1016/j.apmr.2003.10.015
    1. Chollet F., DiPiero V., Wise R. J., Brooks D. J., Dolan R. J., Frackowiak R. S. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol. 29, 63–71. 10.1002/ana.410290112
    1. Cohen L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Percept. Mot. Skills 32, 639–644. 10.2466/pms.1971.32.2.639
    1. Conroy S. S., Whitall J., Dipietro L., Jones-Lush L. M., Zhan M., Finley M. A., et al. . (2011). Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial. Arch. Phys. Med. Rehabil. 92, 1754–1761. 10.1016/j.apmr.2011.06.016
    1. Cordo P., Wolf S., Lou J. S., Bogey R., Stevenson M., Hayes J., et al. . (2013). Treatment of severe hand impairment following stroke by combining assisted movement, muscle vibration, and biofeedback. J. Neurol. Phys. Ther. 37, 194–203. 10.1097/NPT.0000000000000023
    1. Coupar F., Pollock A., Rowe P., Weir C., Langhorne P. (2012). Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin. Rehabil. 26, 291–313. 10.1177/0269215511420305
    1. Cousins E., Ward A., Roffe C., Rimington L., Pandyan A. (2010). Does low-dose botulinum toxin help the recovery of arm function when given early after stroke? A phase ii randomized controlled pilot study to estimate effect size. Clin. Rehabil. 24, 501–513. 10.1177/0269215509358945
    1. Cramer S. C., Nelles G., Benson R. R., Kaplan J. D., Parker R. A., Kwong K. K., et al. . (1997). A functional mri study of subjects recovered from hemiparetic stroke. Stroke 28, 2518–2527. 10.1161/01.STR.28.12.2518
    1. Crosbie J. H., Lennon S., McGoldrick M. C., McNeill M. D., McDonough S. M. (2012). Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin. Rehabil. 26, 798–806. 10.1177/0269215511434575
    1. Daly J. J., Hogan N., Perepezko E. M., Krebs H. I., Rogers J. M., Goyal K. S., Dohring M. E., et al. . (2005). Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J. Rehabil. Res. Dev. 42, 723–736. 10.1682/JRRD.2005.02.0048
    1. Dam M., Tonin P., De Boni A., Pizzolato G., Casson S., Ermani M., et al. . (1996). Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke 27, 1211–1214. 10.1161/01.STR.27.7.1211
    1. Dashtipour K., Chen J. J., Walker H. W., Lee M. Y. (2015). Systematic literature review of abobotulinumtoxina in clinical trials for adult upper limb spasticity. Am. J. Phys. Med. Rehabil. 94, 229–238. 10.1097/PHM.0000000000000208
    1. de Oliveira R. A., de Andrade D. C., Machado A. G., Teixeira M. J. (2012). Central poststroke pain: somatosensory abnormalities and the presence of associated myofascial pain syndrome. BMC Neurol. 12:89. 10.1186/1471-2377-12-89
    1. Demetrios M., Gorelik A., Louie J., Brand C., Baguley I. J., Khan F. (2014). Outcomes of ambulatory rehabilitation programmes following botulinum toxin for spasticity in adults with stroke. J. Rehabil. Med. 46, 730–737. 10.2340/16501977-1842
    1. Demetrios M., Khan F., Turner-Stokes L., Brand C., McSweeney S. (2013). Multidisciplinary rehabilitation following botulinum toxin and other focal intramuscular treatment for post-stroke spasticity. Cochrane Database Syst. Rev. 6:Cd009689. 10.1002/14651858.CD009689.pub2
    1. Dohle C., Kleiser R., Seitz R. J., Freund H. J. (2004). Body scheme gates visual processing. J. Neurophysiol. 91, 2376–2379. 10.1152/jn.00929.2003
    1. Eliassen J. C., Boespflug E. L., Lamy M., Allendorfer J., Chu W. J., Szaflarski J. P. (2008). Brain-mapping techniques for evaluating poststroke recovery and rehabilitation: a review. Top. Stroke Rehabil. 15, 427–450. 10.1310/tsr1505-427
    1. Elsner B., Kugler J., Pohl M., Mehrholz J. (2013). Transcranial Direct Current Stimulation (Tdcs) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst. Rev. 11:Cd009645. 10.1002/14651858.cd009645.pub2
    1. Eng K., Siekierka E., Pyk P., Chevrier E., Hauser Y., Cameirao M., et al. . (2007). Interactive visuo-motor therapy system for stroke rehabilitation. Med. Biol. Eng. Comput. 45, 901–907. 10.1007/s11517-007-0239-1
    1. Ertelt D., Small S., Solodkin A., Dettmers C., McNamara A., Binkofski F., et al. . (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36(Suppl. 2), T164–T173. 10.1016/j.neuroimage.2007.03.043
    1. Fadiga L., Fogassi L., Pavesi G., Rizzolatti G. (1995). Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611.
    1. Fasoli S. E., Krebs H. I., Hogan N. (2004). Robotic technology and stroke rehabilitation: translating research into practice. Top. Stroke Rehabil. 11, 11–19. 10.1310/G8XB-VM23-1TK7-PWQU
    1. Feydy A., Carlier R., Roby-Brami A., Bussel B., Cazalis F., Pierot L., et al. . (2002). Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33, 1610–1617. 10.1161/01.STR.0000017100.68294.52
    1. Fitzgerald S. G., Cooper R. A., Thorman T., Cooper R., Guo S., Boninger M. L. (2004). The game(cycle) exercise system: comparison with standard ergometry. J. Spinal. Cord. Med. 27, 453–459.
    1. Foley N., Pereira S., Salter K., Fernandez M. M., Speechley M., Sequeira K., et al. . (2013). Treatment with botulinum toxin improves upper-extremity function post stroke: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 94, 977–989. 10.1016/j.apmr.2012.12.006
    1. Francisco G., Chae J., Chawla H., Kirshblum S., Zorowitz R., Lewis G., et al. . (1998). Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch. Phys. Med. Rehabil. 79, 570–575. 10.1016/S0003-9993(98)90074-0
    1. Friedman N., Chan V., Reinkensmeyer A. N., Beroukhim A., Zambrano G. J., Bachman M., et al. . (2014). Retraining and assessing hand movement after stroke using the musicglove: comparison with conventional hand therapy and isometric grip training. J. Neuroeng. Rehabil. 11:76. 10.1186/1743-000-311-76
    1. Fusco A., Iosa M., Venturiero V., De Angelis D., Morone G., Maglione L., et al. . (2014). After vs. priming effects of anodal transcranial direct current stimulation on upper extremity motor recovery in patients with subacute stroke. Restor. Neurol. Neurosci. 32, 301–312. 10.3233/RNN-130349
    1. Gaggioli A., Morganti F., Walker R., Meneghini A., Alcaniz M., Lozano J. A., et al. . (2004). Training with computer-supported motor imagery in post-stroke rehabilitation. Cyberpsychol. Behav. 7, 327–332. 10.1089/1094931041291312
    1. Gainotti G., Antonucci G., Marra C., Paolucci S. (2001). Relation between depression after stroke, antidepressant therapy, and functional recovery. J. Neurol. Neurosurg. Psychiatry 71, 258–261. 10.1136/jnnp.71.2.258
    1. Gallese V., Fadiga L., Fogassi L., Rizzolatti G. (1996). Action recognition in the premotor cortex. Brain 119(Pt 2), 593–609. 10.1093/brain/119.2.593
    1. Gao F., Wang S., Guo Y., Wang J., Lou M., Wu J., et al. . (2010). Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a micropet study. Eur. J. Nucl. Med. Mol. Imaging 37, 954–961. 10.1007/s00259-009-1342-3
    1. Garrison K. A., Winstein C. J., Aziz-Zadeh L. (2010). The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil. Neural Repair. 24, 404–412. 10.1177/1545968309354536
    1. Giacobbe V., Krebs H. I., Volpe B. T., Pascual-Leone A., Rykman A., Zeiarati G., et al. . (2013). Transcranial Direct Current Stimulation (Tdcs) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation 33, 49–56. 10.3233/NRE-130927
    1. Gordon A. M., Schneider J. A., Chinnan A., Charles J. R. (2007). Efficacy of a hand-arm bimanual intensive therapy (habit) in children with hemiplegic cerebral palsy: a randomized control trial. Dev. Med. Child Neurol. 49, 830–838. 10.1111/j.1469-8749.2007.00830.x
    1. Gracies J. M., Bayle N., Goldberg S., Simpson D. M. (2014). Botulinum toxin type b in the spastic arm: a randomized, double-blind, placebo-controlled, preliminary study. Arch. Phys. Med. Rehabil. 95, 1303–1311. 10.1016/j.apmr.2014.03.016
    1. Hammami N., Coroian F. O., Julia M., Amri M., Mottet D., Hérisson C., et al. . (2012). Isokinetic muscle strengthening after acquired cerebral damage: a literature review. Ann. Phys. Rehabil. Med. 55, 279–291. 10.1016/j.rehab.2012.03.003
    1. Hebert D., Lindsay M. P., McIntyre A., Kirton A., Rumney P. G., Bagg S., et al. . (2016). Canadian stroke best practice recommendations: stroke rehabilitation practice guidelines, update 2015. Int. J. Stroke 11, 459–484. 10.1177/1747493016643553
    1. Heller A., Wade D. T., Wood V. A., Sunderland A., Hewer R. L., Ward E. (1987). Arm function after stroke: measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry. 50, 714–719. 10.1136/jnnp.50.6.714
    1. Henderson A., Korner-Bitensky N., Levin M. (2007). Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14, 52–61. 10.1310/tsr1402-52
    1. Hesse S., Schmidt H., Werner C., Bardeleben A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16, 705–710. 10.1097/00019052-200312000-00010
    1. Hesse S., Waldner A., Mehrholz J., Tomelleri C., Pohl M., Werner C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil. Neural Repair 25, 838–846. 10.1177/1545968311413906
    1. Hesse S., Werner C., Pohl M., Rueckriem S., Mehrholz J., Lingnau M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36, 1960–1966. 10.1161/01.STR.0000177865.37334.ce
    1. Hesse S., Werner C., Schonhardt E. M., Bardeleben A., Jenrich W., Kirker S. G. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor. Neurol. Neurosci. 25, 9–15.
    1. Hidler J., Nichols D., Pelliccio M., Brady K. (2005). Advances in the understanding and treatment of stroke impairment using robotic devices. Top. Stroke Rehabil. 12, 22–35. 10.1310/RYT5-62N4-CTVX-8JTE
    1. Hikosaka O., Miyashita K., Miyachi S., Sakai K., Lu X. (1998). Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiol. Learn. Mem. 70, 137–149. 10.1006/nlme.1998.3844
    1. Hummel F. C., Cohen L. G. (2006). Non-Invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712. 10.1016/S1474-4422(06)70525-7
    1. Hunter J. V. (2002). Magnetic resonance imaging in pediatric stroke. Top. Magn. Reson. Imaging 13, 23–38. 10.1097/00002142-200202000-00003
    1. Hwang C. H., Seong J. W., Son D. S. (2012). Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin. Rehabil. 26, 696–704. 10.1177/0269215511431473
    1. Jackson P. L., Lafleur M. F., Malouin F., Richards C., Doyon J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch. Phys. Med. Rehabil. 82, 1133–1141. 10.1053/apmr.2001.24286
    1. Jahangir A. W., Tan H. J., Norlinah M. I., Nafisah W. Y., Ramesh S., Hamidon B. B., et al. . (2007). Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after stroke. Med. J. Malaysia 62, 319–322.
    1. Jang S. H., You S. H., Hallett M., Cho Y. W., Park C. M., Cho S. H., et al. . (2005). Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 86, 2218–2223. 10.1016/j.apmr.2005.04.015
    1. Johansson B. B. (2011). Current trends in stroke rehabilitation. a review with focus on brain plasticity. Acta Neurol. Scand. 123, 147–159. 10.1111/j.1600-0404.2010.01417.x
    1. Jönsson A. C., Lindgren I., Hallström B., Norrving B., Lindgren A. (2006). Prevalence and intensity of pain after stroke: a population based study focusing on patients' perspectives. J. Neurol. Neurosurg. Psychiatry 77, 590–595. 10.1136/jnnp.2005.079145
    1. Kaji R., Osako Y., Suyama K., Maeda T., Uechi Y., Iwasaki M. (2010). Botulinum toxin type a in post-stroke upper limb spasticity. Curr. Med. Res. Opin. 26, 1983–1992. 10.1185/03007995.2010.497103
    1. Kaku M., Simpson D. M. (2016). Spotlight on botulinum toxin and its potential in the treatment of stroke-related spasticity. Drug Des. Devel. Ther. 10, 1085–1099. 10.2147/DDDT.S80804
    1. Kandel M., Beis J. M., Le Chapelain L., Guesdon H., Paysant J. (2012). Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review. Ann. Phys. Rehabil. Med. 55, 657–680. 10.1016/j.rehab.2012.09.001
    1. Kandel S., Orliaguet J. P., Viviani P. (2000). Perceptual anticipation in handwriting: the role of implicit motor competence. Percept. Psychophys. 62, 706–716. 10.3758/BF03206917
    1. Kato P. M., Cole S. W., Bradlyn A. S., Pollock B. H. (2008). A video game improves behavioral outcomes in adolescents and young adults with cancer: a randomized trial. Pediatrics 122, e305–e317. 10.1542/peds.2007-3134
    1. Kelso J. A., Southard D. L., Goodman D. (1979). On the nature of human interlimb coordination. Science 203, 1029–1031. 10.1126/science.424729
    1. Khedr E. M., Shawky O. A., El-Hammady D. H., Rothwell J. C., Darwish E. S., Mostafa O. M., et al. . (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. Neurorehabil. Neural Repair 27, 592–601. 10.1177/1545968313484808
    1. Kiper P., Agostini M. (2014). Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed. Res. Int. 2014:752128. 10.1155/2014/752128
    1. Kocabas H., Levendoglu F., Ozerbil O. M., Yuruten B. (2007). Complex regional pain syndrome in stroke patients. Int. J. Rehabil. Res. 30, 33–38. 10.1097/MRR.0b013e3280146f57
    1. Kohler E., Keysers C., Umiltà M. A., Fogassi L., Gallese V., Rizzolatti G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848. 10.1126/science.1070311
    1. Krakauer J. W. (2006). Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19, 84–90. 10.1097/
    1. Krakauer J. W., Shadmehr R. (2006). Consolidation of motor memory. Trends Neurosci. 29, 58–64. 10.1016/j.tins.2005.10.003
    1. Krebs H. I., Mernoff S., Fasoli S. E., Hughes R., Stein J., Hogan N. (2008). A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation 23, 81–87.
    1. Krichevets A. N., Sirotkina E. B., Yevsevicheva I. V., Zeldin L. M. (1995). Computer games as a means of movement rehabilitation. Disabil. Rehabil. 17, 100–105. 10.3109/09638289509166635
    1. Kumar R., Metter E. J., Mehta A. J., Chew T. (1990). Shoulder pain in hemiplegia. The role of exercise. Am. J. Phys. Med. Rehabil. 69, 205–208. 10.1097/00002060-199008000-00007
    1. Kwakkel G., Kollen B., Lindeman E. (2004). Understanding the pattern of functional recovery after stroke: facts and theories. Restor. Neurol. Neurosci. 22, 281–299.
    1. Kwakkel G., Kollen B. J., van der Grond J., Prevo A. J. (2003). Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 34, 2181–2186. 10.1161/
    1. Kwakkel G., Kollen B., Twisk J. (2006). Impact of time on improvement of outcome after stroke. Stroke 37, 2348–2353. 10.1161/01.STR.0000238594.91938.1e
    1. Lamy J. C., Russman H., Shahim E. A., Meunier S., Hallett M. (2010). Paired associative stimulation induces change in presynaptic inhibition of ia terminals in wrist flexors in humans. J. Neurophysiol. 104, 755–764. 10.1152/jn.00761.2009
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377, 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Langhorne P., Legg L. (2003). Evidence behind stroke rehabilitation. J. Neurol. Neurosurg. Psychiatry 74(Suppl. 4), iv18–iv21. 10.1136/jnnp.74.suppl_4.iv18
    1. Laver K. E., George S., Thomas S., Deutsch J. E., Crotty M. (2011). Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 9:Cd008349. 10.1002/14651858.CD008349.pub2
    1. Lefebvre S., Dricot L., Laloux P., Gradkowski W., Desfontaines P., Evrard F., et al. . (2015). Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain 138 (Pt 1), 149–163. 10.1093/brain/awu336
    1. Lefebvre S., Thonnard J. L., Laloux P., Peeters A., Jamart J., Vandermeeren Y. (2014). Single session of dual-tdcs transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabil. Neural Repair 28, 100–110. 10.1177/1545968313478485
    1. Lehéricy S., Benali H., Van de Moortele P. F., Pélégrini-Issac M., Waechter T., Ugurbil K., et al. . (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl. Acad. Sci. U.S.A. 102, 12566–12571. 10.1073/pnas.0502762102
    1. Lennon S., Ashburn A. (2000). The bobath concept in stroke rehabilitation: a focus group study of the experienced physiotherapists' perspective. Disabil. Rehabil. 22, 665–674. 10.1080/096382800445461
    1. Liepert J., Tegenthoff M., Malin J. P. (1995). Changes of cortical motor area size during immobilization. Electroencephalogr. Clin. Neurophysiol. 97, 382–386. 10.1016/0924-980X(95)00194-P
    1. Liepert J., Uhde I., Gräf S., Leidner O., Weiller C. (2001). Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. J. Neurol. 248, 315–321. 10.1007/s004150170207
    1. Lim J. Y., Koh J. H., Paik N. J. (2008). Intramuscular botulinum toxin-a reduces hemiplegic shoulder pain: a randomized, double-blind, comparative study versus intraarticular triamcinolone acetonide. Stroke 39, 126–131. 10.1161/STROKEAHA.107.484048
    1. Lindenberg R., Renga V., Zhu L. L., Nair D., Schlaug G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–2184. 10.1212/WNL.0b013e318202013a
    1. Lo A. C., Guarino P. D., Richards L. G., Haselkorn J. K., Wittenberg G. F., Federman D. G., et al. . (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783. 10.1056/NEJMoa0911341
    1. Luft A. R., McCombe-Waller S., Whitall J., Forrester L. W., Macko R., Sorkin J. D., et al. . (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292, 1853–1861. 10.1001/jama.292.15.1853
    1. Lum P. S., Burgar C. G., Shor P. C., Majmundar M., Van der Loos M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959. 10.1053/apmr.2001.33101
    1. Lundström E., Smits A., Terént A., Borg J. (2009). Risk factors for stroke-related pain 1 year after first-ever stroke. Eur. J. Neurol. 16, 188–193. 10.1111/j.1468-1331.2008.02378.x
    1. Maher C. G., Sherrington C., Herbert R. D., Moseley A. M., Elkins M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 83, 713–721.
    1. McCrory P., Turner-Stokes L., Baguley I. J., De Graaff S., Katrak P., Sandanam J., et al. . (2009). Botulinum toxin a for treatment of upper limb spasticity following stroke: a multi-centre randomized placebo-controlled study of the effects on quality of life and other person-centred outcomes. J. Rehabil. Med. 41, 536–544. 10.2340/16501977-0366
    1. Mead G. E., Hsieh C. F., Lee R., Kutlubaev M. A., Claxton A., Hankey G. J., et al. . (2012). Selective serotonin reuptake inhibitors (ssris) for stroke recovery. Cochrane Database Syst. Rev. 11:Cd009286. 10.1002/14651858.CD009286.pub2
    1. Mehrholz J., Hädrich A., Platz T., Kugler J., Pohl M. (2012). Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 6:Cd006876. 10.1002/14651858.CD006876.pub3
    1. Mehrholz J., Platz T., Kugler J., Pohl M. (2008). Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst. Rev. 4:Cd006876. 10.1002/14651858.cd006876.pub2
    1. Meythaler J. M., Vogtle L., Brunner R. C. (2009). A preliminary assessment of the benefits of the addition of botulinum toxin a to a conventional therapy program on the function of people with longstanding stroke. Arch. Phys. Med. Rehabil. 90, 1453–1461. 10.1016/j.apmr.2009.02.026
    1. Mikami K., Jorge R. E., Adams H. P., Jr., Davis P. H., Leira E. C., Jang M., et al. . (2011). Effect of antidepressants on the course of disability following stroke. Am. J. Geriatr. Psychiatry 19, 1007–1015. 10.1097/JGP.0b013e31821181b0
    1. Mitchell L. A., MacDonald R. A. R., Knussen C. (2008). An investigation of the effects of music and art on pain perception. Psychol. Aesthetics Creativity Arts 2, 162 10.1037/1931-3896.2.3.162
    1. Mohammadianinejad S. E., Majdinasab N., Sajedi S. A., Abdollahi F., Moqaddam M. M., Sadr F. (2014). The effect of lithium in post-stroke motor recovery: a double-blind, placebo-controlled, randomized clinical trial. Clin. Neuropharmacol. 37, 73–78. 10.1097/WNF.0000000000000028
    1. Morganti F., Gaggioli A., Castelnuovo G., Bulla D., Vettorello M., Riva G. (2003). The use of technology-supported mental imagery in neurological rehabilitation: a research protocol. Cyberpsychol. Behav. 6, 421–427. 10.1089/109493103322278817
    1. Morris D. M., Taub E., Mark V. W. (2006). Constraint-induced movement therapy: characterizing the intervention protocol. Eura. Medicophys 42, 257–268.
    1. Mudie M. H., Matyas T. A. (2000). Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil. Rehabil. 22, 23–37.
    1. Mudie M. H., Matyas T. A. (1996). Upper extremity retraining following stroke: effects of bilateral practice. Neurorehabil. Neural Repair 10, 167–184. 10.1177/154596839601000304
    1. Nijland R. H., van Wegen E. E., Harmeling-van der Wel B. C., Kwakkel G. (2010). Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the epos cohort study. Stroke 41, 745–750. 10.1161/STROKEAHA.109.572065
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., Paulus W., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Liebetanz D., Lang N., Antal A., Tergau F., Paulus W. (2003). Safety criteria for transcranial direct current stimulation (Tdcs) in humans. Clin. Neurophysiol. 114, 2220–2222. author reply: 22–23. 10.1016/s1388-2457(03)00235-9
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 (Pt 3), 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial dc motor cortex stimulation in humans. Neurology 57, 1899–1901. 10.1212/WNL.57.10.1899
    1. Norouzi-Gheidari N., Archambault P. S., Fung J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49, 479–496. 10.1682/JRRD.2010.10.0210
    1. Oujamaa L., Relave I., Froger J., Mottet D., Pelissier J. Y. (2009). Rehabilitation of arm function after stroke. Literature review. Ann. Phys. Rehabil. Med. 52, 269–293. 10.1016/j.rehab.2008.10.003
    1. Page S. J., Levine P., Sisto S. A., Johnston M. V. (2001). Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke. Phys. Ther. 81, 1455–1462.
    1. Paolucci S., Antonucci G., Grasso M. G., Morelli D., Troisi E., Coiro P., et al. . (2001). Post-stroke depression, antidepressant treatment and rehabilitation results. A case-control study. Cerebrovasc. Dis. 12, 264–271. 10.1159/000047714
    1. Patten C., Lexell J., Brown H. E. (2004). Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. J. Rehabil. Res. Dev. 41, 293–312. 10.1682/JRRD.2004.03.0293
    1. Pignolo L. (2009). Robotics in neuro-rehabilitation. J. Rehabil. Med. 41, 955–960. 10.2340/16501977-0434
    1. Piron L., Turolla A., Agostini M., Zucconi C., Cortese F., Zampolini M., Zannini M., et al. . (2009). Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41, 1016–1102. 10.2340/16501977-0459
    1. Pollock A., Farmer S. E., Brady M. C., Langhorne P., Mead G. E., Mehrholz J., et al. . (2014). Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 11:Cd010820. 10.1002/14651858.CD010820.pub2
    1. Pomeroy V. M., King L., Pollock A., Baily-Hallam A., Langhorne P. (2006). Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst. Rev. 2:Cd003241. 10.1002/14651858.CD003241.pub2
    1. Poreisz C., Boros K., Antal A., Paulus W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72, 208–214. 10.1016/j.brainresbull.2007.01.004
    1. Quandt F., Hummel F. C. (2014). The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review. Exp. Transl. Stroke Med. 6:9. 10.1186/2040-7378-6-9
    1. Ramachandran V. S., Rogers-Ramachandran D., Cobb S. (1995). Touching the phantom limb. Nature 377, 489–490. 10.1038/377489a0
    1. Rehme A. K., Eickhoff S. B., Rottschy C., Fink G. R., Grefkes C. (2012). Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59, 2771–2782. 10.1016/j.neuroimage.2011.10.023
    1. Reinkensmeyer D. J., Wolbrecht E. T., Chan V., Chou C., Cramer S. C., Bobrow J. E. (2012). Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with pneu-wrex to conventional tabletop therapy after chronic stroke. Am. J. Phys. Med. Rehabil. 91(Suppl. 3): S232–S241. 10.1097/PHM.0b013e31826bce79
    1. Remsik A., Young B., Vermilyea R., Kiekoefer L., Abrams J., Evander Elmore S., et al. . (2016). A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke. Exp. Rev. Med. Devices 13, 445–454. 10.1080/17434440.2016.1174572
    1. Richards L. G., Stewart K. C., Woodbury M. L., Senesac C., Cauraugh J. H. (2008). Movement-dependent stroke recovery: a systematic review and meta-analysis of tms and fmri evidence. Neuropsychologia 46, 3–11. 10.1016/j.neuropsychologia.2007.08.013
    1. Ridderikhoff A., Peper C. L., Beek P. J. (2005). Unraveling interlimb interactions underlying bimanual coordination. J. Neurophysiol. 94, 3112–3125. 10.1152/jn.01077.2004
    1. Riener R., Nef T., Colombo G. (2005). Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43, 2–10. 10.1007/BF02345116
    1. Ringman J. M., Saver J. L., Woolson R. F., Clarke W. R., Adams H. P. (2004). Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 63, 468–474. 10.1212/01.WNL.0000133011.10689.CE
    1. Riva G. (2003). Virtual environments in clinical psychology. Psychotherapy 40:68 10.1037/0033-3204.40.1-2.68
    1. Rizzolatti G., Craighero L. (2004). The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192. 10.1146/annurev.neuro.27.070203.144230
    1. Rizzolatti G., Fadiga L., Gallese V., Fogassi L. (1996). Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141. 10.1016/0926-6410(95)00038-0
    1. Rizzolatti G., Sinigaglia C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11, 264–274. 10.1038/nrn2805
    1. Rodriguez-Fornells A., Rojo N., Amengual J. L., Ripollés P., Altenmüller E., Munte T. F. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Ann. N. Y. Acad. Sci. 1252, 282–293. 10.1111/j.1749-6632.2011.06425.x
    1. Rosales R. L., Kong K. H., Goh K. J., Kumthornthip W., Mok V. C., Delgado-De Los M. M., et al. . (2012). Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabil. Neural Repair 26, 812–821. 10.1177/1545968311430824
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A., The Safety of TMS Consensus Group (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039. 10.1016/j.clinph.2009.08.016
    1. Rossi C., Sallustio F., Di Legge S., Stanzione P., Koch G. (2013). Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur. J. Neurol. 20, 202–204. 10.1111/j.1468-1331.2012.03703.x
    1. Rossini P. M., Dal Forno G. (2004). Neuronal post-stroke plasticity in the adult. Restor. Neurol. Neurosci. 22, 193–206.
    1. Sackley C., Brittle N., Patel S., Ellins J., Scott M., Wright C., et al. . (2008). The prevalence of joint contractures, pressure sores, painful shoulder, other pain, falls, and depression in the year after a severely disabling stroke. Stroke 39, 3329–3334. 10.1161/STROKEAHA.108.518563
    1. Santamato A., Micello M. F., Panza F., Fortunato F., Baricich A., Cisari C., et al. . (2014). Can botulinum Toxin type a injection technique influence the clinical outcome of patients with post-stroke upper limb spasticity? A randomized controlled trial comparing manual needle placement and ultrasound-guided injection techniques. J. Neurol. Sci. 347, 39–43. 10.1016/j.jns.2014.09.016
    1. Saposnik G., Levin M. (2011). Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke 42, 1380–1386. 10.1161/STROKEAHA.110.605451
    1. Saposnik G., Teasell R., Mamdani M., Hall J., McIlroy W., Cheung D., et al. . (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 41, 1477–1484. 10.1161/STROKEAHA.110.584979
    1. Sathian K., Greenspan A. I., Wolf S. L. (2000). Doing it with mirrors: a case study of a novel approach to neurorehabilitation. Neurorehabil. Neural Repair 14, 73–76. 10.1177/154596830001400109
    1. Schaechter J. D. (2004). Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 73, 61–72. 10.1016/j.pneurobio.2004.04.001
    1. Schlaug G., Renga V. (2008). Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Rev. Med. Devices 5, 759–768. 10.1586/17434440.5.6.759
    1. Schmidt R., Lee T. (1999). Motor Control and Learning: A Behavioral Emphasis, 3rd Edn. Champaign, IL: Human Kinetics.
    1. Schuhfried O., Crevenna R., Fialka-Moser V., Paternostro-Sluga T. (2012). Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review. J. Rehabil. Med. 44, 99–105. 10.2340/16501977-0941
    1. Shaw L. C., Price C. I., van Wijck F. M., Shackley P., Steen N., Barnes M. P., et al. . (2011). Botulinum toxin for the upper limb after stroke (botuls) trial: effect on impairment, activity limitation, and pain. Stroke 42, 1371–1379. 10.1161/STROKEAHA.110.582197
    1. Sin H., Lee G. (2013). Additional virtual reality training using xbox kinect in stroke survivors with hemiplegia. Am. J. Phys. Med. Rehabil. 92, 871–880. 10.1097/PHM.0b013e3182a38e40
    1. Sivan M., O'Connor R. J., Makower S., Levesley M., Bhakta B. (2011). Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J. Rehabil. Med. 43, 181–189. 10.2340/16501977-0674
    1. Small S. L., Buccino G., Solodkin A. (2012). The mirror neuron system and treatment of stroke. Dev. Psychobiol. 54, 293–310. 10.1002/dev.20504
    1. Soekadar S. R., Birbaumer N., Slutzky M. W., Cohen L. G. (2015). Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179. 10.1016/j.nbd.2014.11.025
    1. Sommerfeld D. K., Eek E. U., Svensson A. K., Holmqvist L. W., von Arbin M. H. (2004). Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke 35, 134–139. 10.1161/01.STR.0000105386.05173.5E
    1. Stefan K., Cohen L. G., Duque J., Mazzocchio R., Celnik P., Sawaki L., et al. . (2005). Formation of a motor memory by action observation. J. Neurosci. 25, 9339–9346. 10.1523/JNEUROSCI.2282-05.2005
    1. Stefan K., Kunesch E., Cohen L. G., Benecke R., Classen J. (2000). Induction of plasticity in the human motor corte by paired associative stimulation. Brain 123, 572–584. 10.1093/brain/123.3.572
    1. Stein J. (2012). Robotics in rehabilitation: technology as destiny. Am. J. Phys. Med. Rehabil. 91(Suppl. 3), S199–S203. 10.1097/PHM.0b013e31826bcbbd
    1. Stinear C. M., Byblow W. D., Ward S. H. (2014). An update on predicting motor recovery after stroke. Annal. Phys. Rehabil. Med. 57, 489–98. 10.1016/j.rehab.2014.08.006
    1. Stinear C. M., Barber P. A., Smale P. R., Coxon J. P., Fleming M. K., Byblow W. D. (2007). Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(Pt 1), 170–180. 10.1093/brain/awl333
    1. Stoykov M. E., Lewis G. N., Corcos D. M. (2009). Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil. Neural Repair 23, 945–953. 10.1177/1545968309338190
    1. Subramanian S. K., Lourenço C. B., Chilingaryan G., Sveistrup H., Levin M. F. (2013). Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil. Neural Repair 27, 13–23. 10.1177/1545968312449695
    1. Swinnen S. P., Dounskaia N., Duysens J. (2002). Patterns of bimanual interference reveal Movement encoding within a radial egocentric reference frame. J. Cogn. Neurosci. 14, 463–471. 10.1162/089892902317361976
    1. Taub E., Lum P. S., Hardin P., Mark V. W., Uswatte G. (2005). Autocite: automated delivery of CI therapy with reduced effort by therapists. Stroke 36, 1301–1304. 10.1161/01.STR.0000166043.27545.e8
    1. Taub E., Uswatte G., King D. K., Morris D., Crago J. E., Chatterjee A. (2006). A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37, 1045–1049. 10.1161/01.STR.0000206463.66461.97
    1. Teasell R. W., Murie Fernandez M., McIntyre A., Mehta S. (2014). Rethinking the continuum of stroke rehabilitation. Arch. Phys. Med. Rehabil. 95, 595–596. 10.1016/j.apmr.2013.11.014
    1. Thaut M. H., Demartin M., Sanes J. N. (2008). Brain networks for integrative rhythm formation. PLoS ONE 3:e2312. 10.1371/journal.pone.0002312
    1. Timmermans A. A., Lemmens R. J., Monfrance M., Geers R. P., Bakx W., Smeets R. J., et al. . (2014). Effects of task-Oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. J. Neuroeng. Rehabil. 11, 45. 10.1186/1743-0003-11-45
    1. Truelsen T., Piechowski-Józwiak B., Bonita R., Mathers C., Bogousslavsky J., Boysen G. (2006). Stroke incidence and prevalence in Europe: a review of available data. Eur. J. Neurol. 13, 581–598. 10.1111/j.1468-1331.2006.01138.x
    1. Turner-Stokes L., Baguley I. J., De Graaff S., Katrak P., Davies L., McCrory P., et al. . (2010). Goal attainment scaling in the evaluation of treatment of upper limb spasticity with botulinum toxin: a secondary analysis from a double-blind placebo-controlled randomized clinical trial. J. Rehabil. Med. 42, 81–89. 10.2340/16501977-0474
    1. Turolla A., Dam M., Ventura L., Tonin P., Agostini M., Zucconi C., et al. . (2013). Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10, 85. 10.1186/1743-0003-10-85
    1. Vafadar A. K., Côté J. N., Archambault P. S. (2015). Effectiveness of functional electrical stimulation in improving clinical outcomes in the upper arm following stroke: a systematic review and meta-analysis. BioMed. Res. Int. 2015:729768. 10.1155/2015/729768
    1. van Dokkum L. E., Ward T., Laffont I. (2015). Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke. Ann. Phys. Rehabil. Med. 58, 3–8. 10.1016/j.rehab.2014.09.016
    1. van Kuijk A. A., Pasman J. W., Hendricks H. T., Zwarts M. J., Geurts A. C. (2009). Predicting hand motor recovery in severe stroke: the role of motor evoked potentials in relation to early clinical assessment. Neurorehabil. Neural Repair 23, 45–51. 10.1177/1545968308317578
    1. Veldman M. P., Maffiuletti N. A., Hallett M., Zijdewind I., Hortobágyi T. (2014). Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci. Biobehav. Rev. 47, 22–35. 10.1016/j.neubiorev.2014.07.013
    1. Viana R. T., Laurentino G. E., Souza R. J., Fonseca J. B., Silva Filho E. M., Dias S. N., et al. . (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation 34, 437–446. 10.3233/NRE-141065
    1. Wade D. T., Langton-Hewer R., Wood V. A., Skilbeck C. E., Ismail H. M. (1983). The hemiplegic arm after stroke: measurement and recovery. J. Neurol. Neurosurg. Psychiatry 46, 521–524. 10.1136/jnnp.46.6.521
    1. Wang L. E., Fink G. R., Diekhoff S., Rehme A. K., Eickhoff S. B., Grefkes C. (2011). Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann. Neurol. 69, 375–388. 10.1002/ana.22237
    1. Wang R. Y., Chen H. I., Chen C. Y., Yang Y. R. (2005). Efficacy of Bobath versus orthopaedic approach on impairment and Function at different motor recovery stages after stroke: a randomized controlled study. Clin. Rehabil. 19, 155–164. 10.1191/0269215505cr850oa
    1. Ward A. B., Wissel J., Borg J., Ertzgaard P., Herrmann C., Kulkarni J., et al. . (2014). Functional goal achievement in post-stroke spasticity patients: the BOTOX(R) economic spasticity trial (BEST). J. Rehabil. Med. 46, 504–513. 10.2340/16501977-1817
    1. Ween J. E. (2008). Functional imaging of stroke recovery: an ecological review from a neural network perspective with an emphasis on motor systems. J. Neuroimaging 18, 227–236. 10.1111/j.1552-6569.2007.00180.x
    1. Welmer A. K., Widén Holmqvist L., Sommerfeld D. K. (2010). Location and severity of spasticity in the first 1-2 weeks and at 3 and 18 months after stroke. Eur. J. Neurol. 17, 720–725. 10.1111/j.1468-1331.2009.02915.x
    1. Whitall J., McCombe Waller S., Silver K. H., Macko R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31, 2390–2395. 10.1161/01.STR.31.10.2390
    1. Wittenberg G. F., Chen R., Ishii K., Bushara K. O., Eckloff S., Croarkin E., et al. . (2003). Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil. Neural Repair 17, 48–57. 10.1177/0888439002250456
    1. Wolf S. L., Milton S. B., Reiss A., Easley K. A., Shenvi N. V., Clark P. C. (2012). Further assessment to determine the additive effect of botulinum toxin type a on an upper extremity exercise program to enhance function among individuals with chronic stroke but extensor capability. Arch. Phys. Med. Rehabil. 93, 578–587. 10.1016/j.apmr.2011.10.026
    1. Yekutiel M. (2000). Sensory Re-Education of the Hand after Stroke. Hoboken, NJ: Wiley.
    1. Yekutiel M., Guttman E. (1993). A controlled trial of the retraining of the sensory function of the hand in stroke patients. J. Neurol. Neurosurg. Psychiatry 56, 241–244. 10.1136/jnnp.56.3.241
    1. Zimerman M., Heise K. F., Hoppe J., Cohen L. G., Gerloff C., Hummel F. C. (2012). Modulation of Training by Single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke 43, 2185–2191. 10.1161/STROKEAHA.111.645382

Source: PubMed

3
購読する