Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders

Dawid Bączkowicz, Edyta Majorczyk, Dawid Bączkowicz, Edyta Majorczyk

Abstract

Background: Chondromalacia, lateral patellar compression syndrome and osteoarthritis are common patellofemoral joint disorders leading to functional and/or structural disturbances in articular surfaces. The objective of the study was to evaluate their impact on joint motion quality via the vibroacoustic signal generated during joint movement analysis.

Methods: Seventy-three patients (30 with chondromalacia, 21 with lateral patellar compression syndrome, and 22 with osteoarthritis) and 32 healthy controls were tested during flexion/extension knee motion for vibroacoustic signals using an acceleration sensor. Estimated parameters: variation of mean square (VMS), difference between mean of four maximum and mean of four minimum values (R4), power spectral density for frequency of 50-250 Hz (P1) and 250-450 Hz (P2) were analyzed.

Results: Vibroacoustic signals recorded for particular disorders were characterized by significantly higher values of parameters in comparison to the control group. Moreover, differences were found among the various types of patellofemoral joint disturbances. Chondromalacia and osteoarthritis groups showed differences in all parameters examined. In addition, osteoarthritis patients exhibited differences in VMS, P1 and P2 values in comparison to lateral patellar compression syndrome patients. However, only the value of R4 was found to differ between knees with lateral patellar compression syndrome and those with chondromalacia.

Conclusion: Our results suggest that particular disorders are characterized by specific vibroacoustic patterns of waveforms as well as values of analyzed parameters.

Figures

Figure 1
Figure 1
Correct attachment of vibroacoustic sensor.
Figure 2
Figure 2
Time series specific for particular PFJ disorders. (A), control healthy knee; (B) knee with lateral patellar compression syndrome; (C) knee with chondromalacia; (D) knee with patellofemoral joint osteoarthritis.
Figure 3
Figure 3
Signal time-frequency analysis representative for particular PFJ disorders. (A), control healthy knee; (B) knee with lateral patellar compression syndrome; (C) knee with chondromalacia; (D) knee with patellofemoral joint osteoarthritis.
Figure 4
Figure 4
Power spectrum distribution in VAG signal for each analyzed group.

References

    1. Donell ST, Glasgow MM. Isolated patellofemoral osteoarthritis. Knee. 2007;14:169–176. doi: 10.1016/j.knee.2006.11.002.
    1. Tecklenburg K, Dejour D, Hoser C, Fink C. Body and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2006;14:235–240. doi: 10.1007/s00167-005-0683-0.
    1. White BJ, Sherman OH. Patellofemoral instability. Bull NYU Hosp Jt Dis. 2009;67:22–29.
    1. Kim KH, Joo YB. Patellofemoral osteoarthritis. Knee Surg Relat Res. 2013;24:193–200. doi: 10.5792/ksrr.2012.24.4.193.
    1. Merchant AC. Classification of patellofemoral disorders. Arthroscopy. 1998;4:235–240. doi: 10.1016/S0749-8063(88)80037-9.
    1. Samim M, Smitaman E, Lawrence D, Moukaddam H. MRI of anterior knee pain. Skeletal Radiol. 2014;43:875–893. doi: 10.1007/s00256-014-1816-7.
    1. Ostlere S. The extensor mechanism of the knee. Radiol Clin North Am. 2013;51:393–411. doi: 10.1016/j.rcl.2012.11.006.
    1. Kijowski R, Blankenbaker D, Stanton P, Fine J, De Smet A. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint. Skeletal Radiol. 2003;35:895–902. doi: 10.1007/s00256-006-0111-7.
    1. Gudbergsen H, Lohmander LS, Jones G, Christensen R, Bartels EM, Danneskiold-Samsøe B, Bliddal H, Boesen M. Correlations between radiographic assessments and MRI features of knee osteoarthritis – a cross-sectional study. Osteoarthritis Cartilage. 2013;21:535–543. doi: 10.1016/j.joca.2012.12.010.
    1. Rangayyan RM, Wu Y. Screening of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows. Biomed Signal Proces. 2010;5:53–58. doi: 10.1016/j.bspc.2009.03.008.
    1. Leszko F, Zingde S, Argenson JN, Dennis D, Wasielewski R, Mahfouz M, Komistek R, De Bock T. Vibroarthrography as a potential non-invasive diagnostic tool: application to articular cartilage condition assessment. J Bone Joint Surg Br. 2012;94-B(Suppl XL):39.
    1. Lancaster AR, Nyland J, Roberts C. The validity of the motion palpation test for determining patellofemoral joint articular cartilage damage. Phys Ther Sport. 2007;8:59–65. doi: 10.1016/j.ptsp.2006.12.003.
    1. Kim KS, Seo JH, Kang JU, Song CG. An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput Methods Programs Biomed. 2009;94:198–206. doi: 10.1016/j.cmpb.2008.12.012.
    1. Mascaro B, Prior J, Shark LK, Selfe J, Cole P, Goodacre J. Exploratory study of a non-invasive method based on acoustic emission for assessing the dynamic integrity of knee joints. Med Eng Phys. 2009;31:1013–1022. doi: 10.1016/j.medengphy.2009.06.007.
    1. Rangayyan RM, Oloumi F, Wu Y, Cai S. Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed Signal Proces. 2013;8:23–29. doi: 10.1016/j.bspc.2012.05.004.
    1. Mu T, Nandi AK, Rangayyan RM. Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm. Comput Biol Med. 2008;38:1103–1111. doi: 10.1016/j.compbiomed.2008.08.009.
    1. Bączkowicz D, Kręcisz K. Vibroarthrography in the evaluation of musculoskeletal system – a pilot study. Ortop Traumatol Rehabil. 2013;15:407–416. doi: 10.5604/15093492.1084242.
    1. Tanaka N, Hoshiyama M. Articular sound and clinical stages in knee arthopathy. J Musculoskelet Res. 2011;14(1):1–9. doi: 10.1142/S0218957711500060.
    1. Reddy NP, Rothschild BM, Mandal M, Gupta V, Suryanarayanan S. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia. Ann Biomed Eng. 1995;23:78–84. doi: 10.1007/BF02368303.
    1. Kim KS, Seo JH, Kang JU, Song CG. Classification of normal and abnormal knee joint using back-propagation neural network. In: Arabnia HR, Yang MQ, Yang JY, editors. International Conference on Bioinformatics & Computational Biology 2008. 2008. pp. 483–488.
    1. Waryasz GR, McDermott AY. Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors. Dyn Med. 2008;7:9–22. doi: 10.1186/1476-5918-7-9.
    1. Murray TF, Dupont JY, Fulkerson JP. Axial and lateral radiographs in evaluating patellofemoral malalignment. Am J Sports Med. 1999;27:580–584.
    1. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E. Histological assessment of cartilage repair: a report by the histology endpoint committee of the International Cartilage Repair Society (ICRS) J Bone Joint Surg Am. 2003;85-A(Suppl 2):45–57.
    1. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke DT, Greenwald R, Hochberg M, Howell D, Kaplan D, Koopman W, Longley S, Mankin H, Mcshane DJ, Medsger T, Meenan R, Jr, Mikkelsen W, Moskowitz R, Murphy W, Rothschild B, Segal M, Sokoloff L, Wolfe F. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29:1039–1049. doi: 10.1002/art.1780290816.
    1. Rangayyan RM, Wu Y. Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann Biomed Eng. 2009;37:156–163. doi: 10.1007/s10439-008-9601-1.
    1. Rangayyan RM, Wu YF. Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Med Biol Eng Comput. 2008;46:223–232. doi: 10.1007/s11517-007-0278-7.
    1. Shark L, Chen H, Goodacre J. Knee acoustic emission: a potential biomarker for quantitative assessment of joint ageing and degeneration. Med Eng Phys. 2011;33:534–545. doi: 10.1016/j.medengphy.2010.12.009.
    1. Tanaka N, Hoshiyama M. Vibroarthrography in patients with knee arthropathy. J Back Musculoskelet Rehabil. 2012;25:117–122.
    1. Leszko F. PhD thesis. 2011. Dynamics, electromyography and vibroarthrography as non-invasive diagnostic tools: investigation of the patellofemoral joint.
    1. McCoy GF, McCrea JD, Beverland DE, Kernohan WG, Mollan RA. Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report. J Bone Joint Surg Br. 1987;69:288–293.
    1. Dousciette SA, Goble EM. The effect of exercise on patellar tracking in lateral patellar compression syndrome. Am J Sports Med. 1992;20:434–440. doi: 10.1177/036354659202000412.
    1. Macmull S, Jaiswal PK, Bentley G, Skinner JA, Carrington RW, Briggs TW. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int Orthop. 2012;36:1371–1377. doi: 10.1007/s00264-011-1465-6.
    1. Shirazi R, Shirazi-Adl A. Deep vertical collagen fibrils play a significant role in mechanics of articular cartilage. J Orthop Res. 2008;26:608–615. doi: 10.1002/jor.20537.
    1. Jiang CC, Liu YJ, Yip KM, Wu E. Physiological patellofemoral crepitus in knee joint disorders. Bull Hosp Jt Dis. 1995;53:22–26.
    1. Zhang W, Doherty M, Peat G, Bierma-Zeinstra MA, Arden NK, Bresnihan B, Herrero-Beaumont G, Kirschner S, Leeb BF, Lohmander LS, Mazières B, Pavelka K, Punzi L, So AK, Tuncer T, Watt I, Bijlsma JW. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010;69:483–489. doi: 10.1136/ard.2009.113100.
    1. Farrokhi S, Piva SR, Gil AB, Oddis CV, Brooks MM, Fitzgerald GK. Association of severity of coexisting patellofemoral disease with increased impairments and functional limitations in patients with knee osteoarthritis. Arthritis Care Res. 2013;65:544–551. doi: 10.1002/acr.21866.
Pre-publication history
    1. The pre-publication history for this paper can be accessed here:

Source: PubMed

3
購読する