Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer's Disease

Daniele Tolomeo, Edoardo Micotti, Sonia Colombo Serra, Michael Chappell, Anniina Snellman, Gianluigi Forloni, Daniele Tolomeo, Edoardo Micotti, Sonia Colombo Serra, Michael Chappell, Anniina Snellman, Gianluigi Forloni

Abstract

Glucose is the central nervous system's only energy source. Imaging techniques capable to detect pathological alterations of the brain metabolism are useful in different diagnostic processes. Such techniques are also beneficial for assessing the evaluation efficacy of therapies in pre-clinical and clinical stages of diseases. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a possible alternative to positron emission tomography (PET) imaging that has been widely explored in cancer research in humans and animal models. We propose that pathological alterations in brain 2-deoxy-D-glucose (2DG) uptake, typical of neurodegenerative diseases, can be detected with CEST MRI. Transgenic mice overexpressing a mutated form of amyloid precusrsor protein (APP23), a model of Alzheimer's disease, analyzed with CEST MRI showed a clear reduction of 2DG uptake in different brain regions. This was reminiscent of the cerebral condition observed in Alzheimer's patients. The results indicate the feasibility of CEST for analyzing the brain metabolic state, with better image resolution than PET in experimental models.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Timing of the experiment. (syringe image from https://www.dreamstime.com/stock-illustration-syringe-icon-white-background-image42045561, author: Konstantin Semenov).
Figure 2
Figure 2
Asymmetry enhancement. Mean asymmetry fitted curves over the cortex region of a single WT mouse before and after 2DG injection. Highlighted by the square is the area where the cest enhancement has been evaluated.
Figure 3
Figure 3
Temporal GCE. Group mean ± standard errors (s.e.m.) are visualized and injection time is indicated as zero. ***p 

Figure 4

Graphic representation of the GCE…

Figure 4

Graphic representation of the GCE ( a ) Time course represented as group…

Figure 4
Graphic representation of the GCE (a) Time course represented as group mean images. Baseline is showed as the mean of the first three time points. (b) Voxel wise comparison. T-test on the normalized images representing the GCE 54 minutes after 2DG injection. In red the areas where WT > APP23 with p < 0.05.

Figure 5

DynamicCEST measurements. ( a ,…

Figure 5

DynamicCEST measurements. ( a , b ) Group mean AUC Dyn images normalized…

Figure 5
DynamicCEST measurements. (a,b) Group mean AUCDyn images normalized to the template. (c) group mean dynamic curves obtained by averaging the signal in the cortex. (d) AUCDyn calculated in the cortex area.

Figure 6

Fitting procedure. The left panel…

Figure 6

Fitting procedure. The left panel shows the location of the different compounds. Analysis…

Figure 6
Fitting procedure. The left panel shows the location of the different compounds. Analysis firstly fitted the contribution of water and NOE (part A) and in a second step the other compounds contributions (part B).

Figure 7

Visual comparison of the two…

Figure 7

Visual comparison of the two techniques. ( a ) Single WT mouse PET…

Figure 7
Visual comparison of the two techniques. (a) Single WT mouse PET imagerepresenting 18F-FDG uptake 50–60 minutes after injection with a voxel size of 0.78 × 0.78 × 0.8 mm3; (b) image representing the GCE of a single mouse 1 hour after the 2DG injection, it has a voxel size of 0.35 × 0.35 × 2 mm3; (c) PET image coregistered with computed tomography image and superimposed on a general mouse brain MRI template; (d) GCE image coregistered and superimposed on the in-house template. SUV = standard uptake value; GCE = glucose cest enhancement.
All figures (7)
Figure 4
Figure 4
Graphic representation of the GCE (a) Time course represented as group mean images. Baseline is showed as the mean of the first three time points. (b) Voxel wise comparison. T-test on the normalized images representing the GCE 54 minutes after 2DG injection. In red the areas where WT > APP23 with p < 0.05.
Figure 5
Figure 5
DynamicCEST measurements. (a,b) Group mean AUCDyn images normalized to the template. (c) group mean dynamic curves obtained by averaging the signal in the cortex. (d) AUCDyn calculated in the cortex area.
Figure 6
Figure 6
Fitting procedure. The left panel shows the location of the different compounds. Analysis firstly fitted the contribution of water and NOE (part A) and in a second step the other compounds contributions (part B).
Figure 7
Figure 7
Visual comparison of the two techniques. (a) Single WT mouse PET imagerepresenting 18F-FDG uptake 50–60 minutes after injection with a voxel size of 0.78 × 0.78 × 0.8 mm3; (b) image representing the GCE of a single mouse 1 hour after the 2DG injection, it has a voxel size of 0.35 × 0.35 × 2 mm3; (c) PET image coregistered with computed tomography image and superimposed on a general mouse brain MRI template; (d) GCE image coregistered and superimposed on the in-house template. SUV = standard uptake value; GCE = glucose cest enhancement.

References

    1. Sharma, S. & Lipincott, W. Biomarkers in Alzheimer’s Disease-Recent Update. Curr. Alzheimer Res. 10.2174/1567205014666170220141822 (2017).
    1. Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat. Rev. Neurol. 2010;6:78–87. doi: 10.1038/nrneurol.2009.217.
    1. Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res. Rev. 2016;30:73–84. doi: 10.1016/j.arr.2016.02.003.
    1. Cohen AD, Klunk WE. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol. Dis. 2014;72PA:117–122. doi: 10.1016/j.nbd.2014.05.001.
    1. Yeo JM, Waddell B, Khan Z, Pal S. A systematic review and meta-analysis of 18F-labeled amyloid imaging in Alzheimer’s disease. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2015;1:5–13.
    1. Zhang S, et al. Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int. J. Clin. Pract. 2012;66:185–198. doi: 10.1111/j.1742-1241.2011.02845.x.
    1. Mosconi L, et al. Pre-Clinical Detection of Alzheimer’s Disease Using FDG-PET, with or without Amyloid Imaging. J. Alzheimers Dis. JAD. 2010;20:843–854. doi: 10.3233/JAD-2010-091504.
    1. Li Y, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:2169–2181. doi: 10.1007/s00259-008-0833-y.
    1. Saint-Aubert, L. et al. Tau PET imaging: present and future directions. Mol. Neurodegener. 12 (2017).
    1. Kehoe EG, McNulty JP, Mullins PG, Bokde ALW. Advances in MRI biomarkers for the diagnosis of Alzheimer’s disease. Biomark. Med. 2014;8:1151–1169. doi: 10.2217/bmm.14.42.
    1. Del Sole A, Malaspina S, Magenta Biasina A. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. Funct. Neurol. 2016;31:205–215.
    1. de Cristóbal J, Garcia-Garcia L, Delgado M, Pozo MA, Medina M. A longitudinal FDG-PET study of transgenic mice overexpressing GSK- 3β in the brain. Curr. Alzheimer Res. 2014;11:175–181. doi: 10.2174/156720501102140313145704.
    1. Snellman A, et al. Longitudinal amyloid imaging in mouse brain with 11C-PIB: comparison of APP23, Tg2576, and APPswe-PS1dE9 mouse models of Alzheimer disease. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013;54:1434–1441.
    1. Overhoff, F. et al. Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [18F]-Florbetaben PET Quantitation in Alzheimer’s Model Mice. Front. Neurosci. 10 (2016).
    1. Maier FC, et al. Longitudinal PET-MRI reveals β-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat. Med. 2014;20:1485–1492. doi: 10.1038/nm.3734.
    1. Kuntner C, et al. Limitations of small animal PET imaging with [18F]FDDNP and FDG for quantitative studies in a transgenic mouse model of Alzheimer’s disease. Mol. Imaging Biol. MIB Off. Publ. Acad. Mol. Imaging. 2009;11:236–240. doi: 10.1007/s11307-009-0198-z.
    1. Macdonald IR, et al. Early detection of cerebral glucose uptake changes in the 5XFAD mouse. Curr. Alzheimer Res. 2014;11:450–460. doi: 10.2174/1567205011666140505111354.
    1. Poisnel G, et al. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease. Neurobiol. Aging. 2012;33:1995–2005. doi: 10.1016/j.neurobiolaging.2011.09.026.
    1. Rojas S, et al. In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography. Neurobiol. Aging. 2013;34:1790–1798. doi: 10.1016/j.neurobiolaging.2012.12.027.
    1. Takkinen, J. S. et al. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal (18)F-FDG and (18)F-DPA-714 PET imaging. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 271678X16677990, 10.1177/0271678X16677990 (2016).
    1. Kincses ZT, Király A, Veréb D, Vécsei L. Structural Magnetic Resonance Imaging Markers of Alzheimer’s Disease and Its Retranslation to Rodent Models. J. Alzheimers Dis. JAD. 2015;47:277–290. doi: 10.3233/JAD-143195.
    1. Micotti E, et al. Striatum and entorhinal cortex atrophy in AD mouse models: MRI comprehensive analysis. Neurobiol. Aging. 2015;36:776–788. doi: 10.1016/j.neurobiolaging.2014.10.027.
    1. Teipel SJ, Buchert R, Thome J, Hampel H, Pahnke J. Development of Alzheimer-disease neuroimaging-biomarkers using mouse models with amyloid-precursor protein-transgene expression. Prog. Neurobiol. 2011;95:547–556. doi: 10.1016/j.pneurobio.2011.05.004.
    1. Qin Y-Y, et al. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods. Neuroradiology. 2013;55:1027–1038. doi: 10.1007/s00234-013-1195-0.
    1. Sun S-W, et al. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp. Neurol. 2005;191:77–85. doi: 10.1016/j.expneurol.2004.09.006.
    1. Mlynárik V, et al. Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. J. Alzheimers Dis. JAD. 2012;31Suppl 3:S87–99. doi: 10.3233/JAD-2012-112072.
    1. Wiesmann M, et al. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice. Theranostics. 2017;7:1277–1289. doi: 10.7150/thno.18509.
    1. Wiesmann M, et al. Hypertension Impairs Cerebral Blood Flow in a Mouse Model for Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:914–922. doi: 10.2174/1567205012666151027130135.
    1. Grandjean J, et al. Complex interplay between brain function and structure during cerebral amyloidosis in APP transgenic mouse strains revealed by multi-parametric MRI comparison. NeuroImage. 2016;134:1–11. doi: 10.1016/j.neuroimage.2016.03.042.
    1. Chan KWY, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn. Reson. Med. 2012;68:1764–1773. doi: 10.1002/mrm.24520.
    1. Yadav NN, et al. Natural D-glucose as a biodegradable MRI relaxation agent. Magn. Reson. Med. 2014;72:823–828. doi: 10.1002/mrm.25329.
    1. Walker-Samuel S, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 2013;19:1067–1072. doi: 10.1038/nm.3252.
    1. Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci. Rep. 2013;3:3045. doi: 10.1038/srep03045.
    1. Rivlin M, Tsarfaty I, Navon G. Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-D-glucose. Magn. Reson. Med. 2014;72:1375–1380. doi: 10.1002/mrm.25467.
    1. Rivlin, M. & Navon, G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci. Rep. 6 (2016).
    1. Haris M, et al. MICEST: a potential tool for non-invasive detection of molecular changes in Alzheimer’s disease. J. Neurosci. Methods. 2013;212:87–93. doi: 10.1016/j.jneumeth.2012.09.025.
    1. Crescenzi R, et al. In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. NeuroImage. 2014;101:185–192. doi: 10.1016/j.neuroimage.2014.06.067.
    1. Crescenzi, R. et al. Longitudinal imaging reveals sub-hippocampal dynamics in glutamate levels associated with histopathologic events in a mouse model of tauopathy and healthy mice. Hippocampus10.1002/hipo.22693 (2016).
    1. Pépin J, et al. In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. NeuroImage. 2016;139:53–64. doi: 10.1016/j.neuroimage.2016.06.023.
    1. Nasrallah FA, Pagès G, Kuchel PW, Golay X, Chuang K-H. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2013;33:1270–1278. doi: 10.1038/jcbfm.2013.79.
    1. Jin T, Mehrens H, Hendrich KS, Kim S-G. Mapping brain glucose uptake with chemical exchange-sensitive spin-lock magnetic resonance imaging. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2014;34:1402–1410. doi: 10.1038/jcbfm.2014.97.
    1. Jin T, Mehrens H, Wang P, Kim S-G. Glucose metabolism-weighted imaging with chemical exchange-sensitive MRI of 2-deoxyglucose (2DG) in brain: Sensitivity and biological sources. NeuroImage. 2016;143:82–90. doi: 10.1016/j.neuroimage.2016.08.040.
    1. Huang MT, Veech RL. Metabolic fluxes between [14C]2-deoxy-D-glucose and [14C]2-deoxy-D-glucose-6-phosphate in brain in vivo. J. Neurochem. 1985;44:567–573. doi: 10.1111/j.1471-4159.1985.tb05450.x.
    1. McDougal DB, et al. Use of nonradioactive 2-deoxyglucose to study compartmentation of brain glucose metabolism and rapid regional changes in rate. Proc. Natl. Acad. Sci. USA. 1990;87:1357–1361. doi: 10.1073/pnas.87.4.1357.
    1. Avants BB, et al. The optimal template effect in hippocampus studies of diseased populations. NeuroImage. 2010;49:2457–2466. doi: 10.1016/j.neuroimage.2009.09.062.
    1. Avants BB, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54:2033–2044. doi: 10.1016/j.neuroimage.2010.09.025.
    1. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage. 2014;92:381–397. doi: 10.1016/j.neuroimage.2014.01.060.
    1. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Xu X, et al. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer. Magn. Reson. Med. 2015;74:1556–1563. doi: 10.1002/mrm.25995.
    1. Xu X, et al. Dynamic Glucose-Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Glioma Patients. Tomogr. J. Imaging Res. 2015;1:105–114.
    1. Mosconi L, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2009;36:811–822. doi: 10.1007/s00259-008-1039-z.
    1. Heneka MT, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J. Neurosci. Off. J. Soc. Neurosci. 2006;26:1343–1354. doi: 10.1523/JNEUROSCI.4236-05.2006.
    1. Luo F, et al. Characterization of 7- and 19-month-old Tg2576 mice using multimodal in vivo imaging: limitations as a translatable model of Alzheimer’s disease. Neurobiol. Aging. 2012;33:933–944. doi: 10.1016/j.neurobiolaging.2010.08.005.
    1. Waldron A-M, et al. Longitudinal Characterization of [18F]-FDG and [18F]-AV45 Uptake in the Double Transgenic TASTPM Mouse Model. J. Alzheimers Dis. JAD. 2017;55:1537–1548. doi: 10.3233/JAD-160760.
    1. Waldron A-M, et al. Quantitative μPET Imaging of Cerebral Glucose Metabolism and Amyloidosis in the TASTPM Double Transgenic Mouse Model of Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:694–703. doi: 10.2174/1567205012666150710104713.
    1. Deleye, S. et al. The Effects of Physiological and Methodological Determinants on 18F-FDG Mouse Brain Imaging Exemplified in a Double Transgenic Alzheimer Model. Mol. Imaging15 (2016).
    1. Waldron A-M, et al. In vivo molecular neuroimaging of glucose utilization and its association with fibrillar amyloid-β load in aged APPPS1−21 mice. Alzheimers Res. Ther. 2015;7:76. doi: 10.1186/s13195-015-0158-6.
    1. Balducci C, Forloni G. APP transgenic mice: their use and limitations. Neuromolecular Med. 2011;13:117–137. doi: 10.1007/s12017-010-8141-7.
    1. Goertzen AL, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2012;53:1300–1309.
    1. Kuntner, C. & Stout, D. B. Quantitative preclinical PET imaging: opportunities and challenges. Front. Phys. 2 (2014).
    1. Lundgaard I, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat. Commun. 2015;6:6807. doi: 10.1038/ncomms7807.
    1. Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer’s disease clinical research. Trends Neurosci. 2014;37:629–641. doi: 10.1016/j.tins.2014.07.002.
    1. Schuenke, P. et al. Simultaneous mapping of water shift and B1 (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data. Magn. Reson. Med. 10.1002/mrm.26133 (2016).
    1. Toyama H, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl. Med. Biol. 2004;31:251–256. doi: 10.1016/S0969-8051(03)00124-0.
    1. Jin T, Kim S-G. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies. NMR Biomed. 2014;27:1313–1324. doi: 10.1002/nbm.3191.
    1. Schuenke P, et al. Fast and Quantitative T1ρ-weighted Dynamic Glucose Enhanced MRI. Sci. Rep. 2017;7:42093. doi: 10.1038/srep42093.
    1. Paech D, et al. T1ρ-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain. Radiology. 2017;285:914–922. doi: 10.1148/radiol.2017162351.
    1. Balducci C, et al. Cognitive deficits associated with alteration of synaptic metaplasticity precede plaque deposition in AβPP23 transgenic mice. J. Alzheimers Dis. JAD. 2010;21:1367–1381. doi: 10.3233/JAD-2010-100675.
    1. Sturchler-Pierrat C, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA. 1997;94:13287–13292. doi: 10.1073/pnas.94.24.13287.
    1. Yushkevich PA, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31:1116–1128. doi: 10.1016/j.neuroimage.2006.01.015.
    1. Desmond KL, Moosvi F, Stanisz GJ. Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7T. Magn. Reson. Med. 2014;71:1841–1853. doi: 10.1002/mrm.24822.
    1. Wang F, et al. Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn. Reson. Med. 2016;76:1531–1541. doi: 10.1002/mrm.26045.
    1. Windschuh J, et al. Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7T. NMR Biomed. 2015;28:529–537. doi: 10.1002/nbm.3283.
    1. Zaiss M, Schmitt B, Bachert P. Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J. Magn. Reson. 2011;211:149–155. doi: 10.1016/j.jmr.2011.05.001.
    1. Zhou IY, et al. Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting. Sci. Rep. 2017;7:84. doi: 10.1038/s41598-017-00167-y.
    1. Miller CO, et al. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy. Anal. Chem. 2015;87:5824–5830. doi: 10.1021/acs.analchem.5b01296.
    1. Jones CK, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage. 2013;77:114–124. doi: 10.1016/j.neuroimage.2013.03.047.
    1. Ma Y, et al. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005;135:1203–1215. doi: 10.1016/j.neuroscience.2005.07.014.

Source: PubMed

3
購読する