Searching for the elusive typhoid diagnostic

Stephen Baker, Michael Favorov, Gordon Dougan, Stephen Baker, Michael Favorov, Gordon Dougan

Abstract

Typhoid (enteric) fever is still a common disease in many developing countries but current diagnostic tests are inadequate. Studies on pathogenesis and genomics have provided new insight into the organisms that cause enteric fever. Better understanding of the microorganisms explains, in part, why our current typhoid methodologies are limited in their diagnostic information and why developing new strategies may be a considerable challenge. Here we discuss the current position of typhoid diagnostics, highlight the need for technological improvements and suggest potential ways of advancing this area.

Figures

Figure 1
Figure 1
Identifying the techniques and issues which surround the development of a new enteric fever diagnostic test. Samples, targets, methods and issues.
Figure 2
Figure 2
The lifestyle of Salmonella Typhi in the human host and implications for diagnostics. A; For S. Typhi infection, the organism normally enters the human host through oral ingestion of an infectious dose. B; S. Typhi does not replicate in large numbers in the intestine and shedding may be sporadic and limited. C; Invasion occurs through the terminal ileum, perhaps a short time after ingestion, M cells may be the preferred portal of entry. D; S. Typhi is transferred to monocytic cells and is trafficked to the reticulo-endothelial system, potentially in a semi-dormant state. E; S. Typhi re-emerges at an unknown time from the reticulo-endothelial system, possibly as the acquired immune response is activated, and re-enters the blood stream in low numbers. F; S. Typhi seeds into the liver, the gall bladder and the bone marrow where it can reside and may be detected for months or years. G; S. Typhi can enter into the bile duct and be shed sporadically, potentially in high numbers into the environment via the intestine.

References

    1. Bhan MK, Bahl R, Bhatnagar S. Typhoid and paratyphoid fever. Lancet. 2005;366(9487):749–762. doi: 10.1016/S0140-6736(05)67181-4.
    1. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ. 2004;82(5):346–353.
    1. Karkey A, Aryjal A, Basnyat B, Baker S. Kathmandu, Nepal; Still an Enteric Fever Capital of the World. JIDC. 2008;2(6):461–465.
    1. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002;347(22):1770–1782. doi: 10.1056/NEJMra020201.
    1. Chau TT, Campbell JI, Galindo CM, Van Minh Hoang N, Diep TS, Nga TT, Van Vinh Chau N, Tuan PQ, Page AL, Ochiai RL. Antimicrobial drug resistance of Salmonella enterica serovar typhi in asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob Agents Chemother. 2007;51(12):4315–4323. doi: 10.1128/AAC.00294-07.
    1. Connor BA, Schwartz E. Typhoid and paratyphoid fever in travellers. Lancet Infect Dis. 2005;5(10):623–628. doi: 10.1016/S1473-3099(05)70239-5.
    1. Ochiai RL, Wang X, von Seidlein L, Yang J, Bhutta ZA, Bhattacharya SK, Agtini M, Deen JL, Wain J, Kim DR. Salmonella paratyphi A rates, Asia. Emerg Infect Dis. 2005;11(11):1764–1766.
    1. Sood S, Kapil A, Dash N, Das BK, Goel V, Seth P. Paratyphoid fever in India: An emerging problem. Emerg Infect Dis. 1999;5(3):483–484. doi: 10.3201/eid0503.990329.
    1. Woods CW, Murdoch DR, Zimmerman MD, Glover WA, Basnyat B, Wolf L, Belbase RH, Reller LB. Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Trans R Soc Trop Med Hyg. 2006;100(11):1063–1067. doi: 10.1016/j.trstmh.2005.12.011.
    1. WHO. Typhoid vaccines. Weekly Epidiomiological Record. 2000;32(75):257–265.
    1. WHO. The diagnosis, treatment and prevention of typhoid fever. Communicable Disease Surveillance and Response Vaccine and Biologicals. 2003. pp. 7–18.
    1. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet. 2008;40(8):987–993. doi: 10.1038/ng.195.
    1. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet. 2004;36(12):1268–1274. doi: 10.1038/ng1470.
    1. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001;413(6858):848–852. doi: 10.1038/35101607.
    1. Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TA, Acosta CJ, Farrar J, Dougan G. Evolutionary history of Salmonella typhi. Science. 2006;314(5803):1301–1304. doi: 10.1126/science.1134933.
    1. Galan JE, Curtiss R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA. 1989;86(16):6383–6387. doi: 10.1073/pnas.86.16.6383.
    1. Jones B, Pascopella L, Falkow S. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr Opin Immunol. 1995;7(4):474–478. doi: 10.1016/0952-7915(95)80091-3.
    1. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, Bhutta ZA, Quail MA, Norbertczak H, Walker D, Simmonds M. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics. 2009;10:36. doi: 10.1186/1471-2164-10-36.
    1. Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Baumler AJ. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun. 2005;73(6):3367–3374. doi: 10.1128/IAI.73.6.3367-3374.2005.
    1. Raffatellu M, Chessa D, Wilson RP, Tukel C, Akcelik M, Baumler AJ. Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect Immun. 2006;74(1):19–27. doi: 10.1128/IAI.74.1.19-27.2006.
    1. Wain J, Diep TS, Ho VA, Walsh AM, Nguyen TT, Parry CM, White NJ. Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol. 1998;36(6):1683–1687.
    1. Wain J, Pham VB, Ha V, Nguyen NM, To SD, Walsh AL, Parry CM, Hasserjian RP, HoHo VA, Tran TH. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J Clin Microbiol. 2001;39(4):1571–1576. doi: 10.1128/JCM.39.4.1571-1576.2001.
    1. Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Nataro JP, Edelman R, Pickard D, Dougan G, Chatfield SN, Levine MM. Safety of live oral Salmonella typhi vaccine strains with deletions in htrA and aroC aroD and immune response in humans. Infect Immun. 1997;65(2):452–456.
    1. Woodward WE. Volunteer studies of typhoid fever and vaccines. Trans R Soc Trop Med Hyg. 1980;74(5):553–556. doi: 10.1016/0035-9203(80)90133-9.
    1. Wain J, Hien TT, Connerton P, Ali T, Parry CM, Chinh NT, Vinh H, Phuong CX, Ho VA, Diep TS. Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: application to acute and relapse cases of typhoid fever. J Clin Microbiol. 1999;37(8):2466–2472.
    1. House D, Wain J, Ho VA, Diep TS, Chinh NT, Bay PV, Vinh H, Duc M, Parry CM, Dougan G. Serology of typhoid fever in an area of endemicity and its relevance to diagnosis. J Clin Microbiol. 2001;39(3):1002–1007. doi: 10.1128/JCM.39.3.1002-1007.2001.
    1. Zimmerman MD, Murdoch DR, Rozmajzl PJ, Basnyat B, Woods CW, Richards AL, Belbase RH, Hammer DA, Anderson TP, Reller LB. Murine typhus and febrile illness, Nepal. Emerg Infect Dis. 2008;14(10):1656–1659. doi: 10.3201/eid1410.080236.
    1. Murdoch DR, Woods CW, Zimmerman MD, Dull PM, Belbase RH, Keenan AJ, Scott RM, Basnyat B, Archibald LK, Reller LB. The etiology of febrile illness in adults presenting to Patan hospital in Kathmandu, Nepal. Am J Trop Med Hyg. 2004;70(6):670–675.
    1. Gilman RH, Terminel M, Levine MM, Hernandez-Mendoza P, Hornick RB. Relative efficacy of blood, urine, rectal swab, bone-marrow, and rose-spot cultures for recovery of Salmonella typhi in typhoid fever. Lancet. 1975;1(7918):1211–1213. doi: 10.1016/S0140-6736(75)92194-7.
    1. Parry CM, Hoa NT, Diep TS, Wain J, Chinh NT, Vinh H, Hien TT, White NJ, Farrar JJ. Value of a single-tube widal test in diagnosis of typhoid fever in Vietnam. J Clin Microbiol. 1999;37(9):2882–2886.
    1. Baker S, Holt K, Vosse E van de, Roumagnac P, Whitehead S, King E, Ewels P, Keniry A, Weill FX, Lightfoot D. High-throughput genotyping of Salmonella enterica serovar Typhi allowing geographical assignment of haplotypes and pathotypes within an urban District of Jakarta, Indonesia. J Clin Microbiol. 2008;46(5):1741–1746. doi: 10.1128/JCM.02249-07.
    1. Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, Parkhill J, Stocker B, Dougan G. A novel linear plasmid mediates flagellar variation in Salmonella Typhi. PLoS Pathog. 2007;3(5):e59. doi: 10.1371/journal.ppat.0030059.
    1. Moshitch S, Doll L, Rubinfeld BZ, Stocker BA, Schoolnik GK, Gafni Y, Frankel G. Mono- and bi-phasic Salmonella typhi: genetic homogeneity and distinguishing characteristics. Mol Microbiol. 1992;6(18):2589–2597. doi: 10.1111/j.1365-2958.1992.tb01436.x.
    1. Frankel G, Newton SM, Schoolnik GK, Stocker BA. Unique sequences in region VI of the flagellin gene of Salmonella typhi. Mol Microbiol. 1989;3(10):1379–1383. doi: 10.1111/j.1365-2958.1989.tb00119.x.
    1. Baker S, Sarwar Y, Aziz H, Haque A, Ali A, Dougan G, Wain J, Haque A. Detection of Vi-negative Salmonella enterica serovar typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan. J Clin Microbiol. 2005;43(9):4418–4425. doi: 10.1128/JCM.43.9.4418-4425.2005.
    1. Wain J, House D, Zafar A, Baker S, Nair S, Kidgell C, Bhutta Z, Dougan G, Hasan R. Vi antigen expression in Salmonella enterica serovar Typhi clinical isolates from Pakistan. J Clin Microbiol. 2005;43(3):1158–1165. doi: 10.1128/JCM.43.3.1158-1165.2005.
    1. House D, Chinh NT, Diep TS, Parry CM, Wain J, Dougan G, White NJ, Hien TT, Farrar JJ. Use of paired serum samples for serodiagnosis of typhoid fever. J Clin Microbiol. 2005;43(9):4889–4890. doi: 10.1128/JCM.43.9.4889-4890.2005.
    1. Lim PL, Tam FC, Cheong YM, Jegathesan M. One-step 2-minute test to detect typhoid-specific antibodies based on particle separation in tubes. J Clin Microbiol. 1998;36(8):2271–2278.
    1. Prakash P, Sen MR, Mishra OP, Gulati AK, Shukla BN, Nath G. Dot enzyme immunoassay (Typhidot) in diagnosis of typhoid fever in children. J Trop Pediatr. 2007;53(3):216–217. doi: 10.1093/tropej/fmm008.
    1. Dutta S, Sur D, Manna B, Sen B, Deb AK, Deen JL, Wain J, Von Seidlein L, Ochiai L, Clemens JD. Evaluation of new-generation serologic tests for the diagnosis of typhoid fever: data from a community-based surveillance in Calcutta, India. Diagn Microbiol Infect Dis. 2006;56(4):359–365. doi: 10.1016/j.diagmicrobio.2006.06.024.
    1. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD, Bhutta ZA, Canh do G, Ali M, Shin S. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ. 2008;86(4):260–268. doi: 10.2471/BLT.06.039818.
    1. Barbour AG, Jasinskas A, Kayala MA, Davies DH, Steere AC, Baldi P, Felgner PL. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun. 2008;76(8):3374–3389. doi: 10.1128/IAI.00048-08.
    1. Ali A, Haque A, Haque A, Sarwar Y, Mohsin M, Bashir S, Tariq A. Multiplex PCR for differential diagnosis of emerging typhoidal pathogens directly from blood samples. Epidemiol Infect. 2009;137(1):102–107. doi: 10.1017/S0950268808000654.
    1. Ali K, Zeynab A, Zahra S, Akbar K, Saeid M. Development of an ultra rapid and simple multiplex polymerase chain reaction technique for detection of Salmonella typhi. Saudi Med J. 2006;27(8):1134–1138.
    1. Levy H, Diallo S, Tennant SM, Livio S, Sow SO, Tapia M, Fields PI, Mikoleit M, Tamboura B, Kotloff KL. PCR method to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the blood of patients with clinical enteric fever. J Clin Microbiol. 2008;46(5):1861–1866. doi: 10.1128/JCM.00109-08.
    1. Massi MN, Shirakawa T, Gotoh A, Bishnu A, Hatta M, Kawabata M. Rapid diagnosis of typhoid fever by PCR assay using one pair of primers from flagellin gene of Salmonella typhi. J Infect Chemother. 2003;9(3):233–237. doi: 10.1007/s10156-003-0256-4.
    1. Ambati SR, Nath G, Das BK. Diagnosis of typhoid fever by polymerase chain reaction. Indian J Pediatr. 2007;74(10):909–913. doi: 10.1007/s12098-007-0167-y.
    1. Massi MN, Shirakawa T, Gotoh A, Bishnu A, Hatta M, Kawabata M. Quantitative detection of Salmonella enterica serovar Typhi from blood of suspected typhoid fever patients by real-time PCR. Int J Med Microbiol. 2005;295(2):117–120. doi: 10.1016/j.ijmm.2005.01.003.
    1. Nga TVT, Karkey A, Dongol S, Thuy HN, Dunstan S, Holt K, Tu LTP, Campbell JI, Chau TT, NVV C. Comparison of blood culture and realtime PCR for the detection of Invasive Salmonella serovars in blood and bone marrow specimens from enteric fever patients. Manuscript under consideration.
    1. Cummings CA, Relman DA. Using DNA microarrays to study host-microbe interactions. Emerg Infect Dis. 2000;6(5):513–525. doi: 10.3201/eid0605.000511.
    1. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan TH, Shah N. InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol. 2008;4:218. doi: 10.1038/msb.2008.55.
    1. Hodgetts A, Levin M, Kroll JS, Langford PR. Biomarker discovery in infectious diseases using SELDI. Future Microbiol. 2007;2:35–49. doi: 10.2217/17460913.2.1.35.
    1. Kashino SS, Pollock N, Napolitano DR, Rodrigues V Jr, Campos-Neto A. Identification and characterization of Mycobacterium tuberculosis antigens in urine of patients with active pulmonary tuberculosis: an innovative and alternative approach of antigen discovery of useful microbial molecules. Clin Exp Immunol. 2008;153(1):56–62. doi: 10.1111/j.1365-2249.2008.03672.x.
    1. Mazzulli T, Low DE, Poutanen SM. Proteomics and severe acute respiratory syndrome (SARS): emerging technology meets emerging pathogen. Clin Chem. 2005;51(1):6–7. doi: 10.1373/clinchem.2004.041574.
    1. Barrett TJ, Snyder JD, Blake PA, Feeley JC. Enzyme-linked immunosorbent assay for detection of Salmonella typhi Vi antigen in urine from typhoid patients. J Clin Microbiol. 1982;15(2):235–237.
    1. Fadeel MA, Crump JA, Mahoney FJ, Nakhla IA, Mansour AM, Reyad B, El Melegi D, Sultan Y, Mintz ED, Bibb WF. Rapid diagnosis of typhoid fever by enzyme-linked immunosorbent assay detection of Salmonella serotype typhi antigens in urine. Am J Trop Med Hyg. 2004;70(3):323–328.
    1. Levine MM, Black RE, Lanata C. Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J Infect Dis. 1982;146(6):724–726.
    1. Khatri NS, Maskey P, Poudel S, Jaiswal VK, Karkey A, Koirala S, Shakya N, Agrawal K, Arjyal A, Basnyat B. Gallbladder carriage of Salmonella paratyphi A may be an important factor in the increasing incidence of this infection in South Asia. Ann Intern Med. 2009;150(8):567–568.
    1. Ferreccio C, Levine M, Astroza L, Berrios G, Solari V, Misraji A, Pefaur C. [The detection of chronic Salmonella typhi carriers: a practical method applied to food handlers] Rev Med Chil. 1990;118(1):33–37.
    1. Lanata CF, Levine MM, Ristori C, Black RE, Jimenez L, Salcedo M, Garcia J, Sotomayor V. Vi serology in detection of chronic Salmonella typhi carriers in an endemic area. Lancet. 1983;2(8347):441–443. doi: 10.1016/S0140-6736(83)90401-4.

Source: PubMed

3
購読する