Effect of Short-Term Dietary Intervention and Probiotic Mix Supplementation on the Gut Microbiota of Elderly Obese Women

Raffaella Cancello, Silvia Turroni, Simone Rampelli, Stefania Cattaldo, Marco Candela, Laila Cattani, Stefania Mai, Roberta Vietti, Massimo Scacchi, Patrizia Brigidi, Cecilia Invitti, Raffaella Cancello, Silvia Turroni, Simone Rampelli, Stefania Cattaldo, Marco Candela, Laila Cattani, Stefania Mai, Roberta Vietti, Massimo Scacchi, Patrizia Brigidi, Cecilia Invitti

Abstract

Accumulating literature is providing evidence that the gut microbiota is involved in metabolic disorders, but the question of how to effectively modulate it to restore homeostasis, especially in the elderly, is still under debate. In this study, we profiled the intestinal microbiota of 20 elderly obese women (EO) at the baseline (T0), after 15 days of hypocaloric Mediterranean diet administered as part of a nutritional-metabolic rehabilitation program for obesity (T1), and after a further 15 days of the same diet supplemented with a probiotic mix (T2). Fecal samples were characterized by Illumina MiSeq sequencing of the 16S rRNA gene. The EO microbiota showed the typical alterations found in obesity, namely, an increase in potential pro-inflammatory components (i.e., Collinsella) and a decrease in health-promoting, short-chain fatty acid producers (i.e., Lachnospiraceae and Ruminococcaceae members), with a tendency to reduced biodiversity. After 15 days of the rehabilitation program, weight decreased by (2.7 ± 1.5)% and the gut microbiota dysbiosis was partially reversed, with a decline of Collinsella and an increase in leanness-related taxa. During the next 15 days of diet and probiotics, weight dropped further by (1.2 ± 1.1)%, markers of oxidative stress improved, and Akkermansia, a mucin degrader with beneficial effects on host metabolism, increased significantly. These findings support the relevant role of a correct dietetic approach, even in the short term, to modulate the EO gut microbiota towards a metabolic health-related configuration, counteracting the increased risk of morbidity in these patients.

Keywords: Mediterranean diet; elderly; gut microbiota; obesity; probiotics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The gut microbiota of obese elderly women segregates from that of healthy elders. (A) Box plots showing the distribution of alpha diversity values, according to the inverse Simpson index, in elderly subjects with class I (OB1), class II (OB2) and class III (OB3) obesity, as compared to healthy non-obese controls (EC). Samples are identified with gray dots within boxes. A significantly reduced biodiversity was observed in OB2 patients compared to EC (p = 0.03, Wilcoxon test). (B) PCoA plot of inter-sample diversity, based on Bray–Curtis distances between the genus-level microbial profiles. A significant separation between obese elderly patients and EC was found (p = 1 × 10−5, permutation test with pseudo-F ratios). Samples are identified with colored dots as in A. Ellipses include 99% confidence area based on the standard error of the weighted average of sample coordinates (lilac, elderly obese patients; green, EC).
Figure 2
Figure 2
Genus-level compositional differences in the gut microbiota of obese vs. healthy elders. Box plots showing the distribution of the relative abundance values of discriminant genera between obese (EO) and non-obese healthy elders (EC). Samples from EO patients with class I (OB1, pink), class II (OB2, red) and class III (OB3, brown) obesity are identified with colored dots within boxes. p ≤ 0.05, Wilcoxon test.
Figure 3
Figure 3
Diet and probiotic mix supplementation improve oxidative stress and stool consistency, and reduce fecal calprotectin levels in elderly obese women. (A) Circulating levels of reduced (GSH) and oxidized (GSSG) glutathione, (B) GSH/GSSG ratio, (C) stool consistency by Bristol stool scale (BSS) ranging from type 1 to type 7, where types 1–2 indicate constipation, types 3–4 ideal stools and types 5–7 diarrhea and urgency, and (D) fecal calprotectin concentrations in elderly obese patients before intervention (T0), after two weeks of hypocaloric balanced Mediterranean diet (T1) and after two additional weeks of diet with probiotic mixture supplementation (T2). Data are expressed as mean ± SD. * p < 0.05; ** p < 0.0001, ANOVA.
Figure 4
Figure 4
Diet and probiotic mix supplementation impact on the gut microbiota diversity of elderly obese women. (A) Alpha diversity values, according to the inverse Simpson index, in elders with class I (OB1), class II (OB2) and class III (OB3) obesity, before intervention (T0), after two weeks of hypocaloric balanced Mediterranean diet (T1) and after two additional weeks of diet with probiotic mixture supplementation (T2). On the right, as a control, the biodiversity of the gut microbiota of healthy non-obese elders (EC). Within each group (OB1 to OB3 and EC), samples are colored by subject. The black line within each series indicates the median value. A significantly increased biodiversity was observed in OB2 patients at T1 compared to the baseline (p = 0.04; Wilcoxon test). (B) PCoA plot based on Bray–Curtis distances between the genus-level microbiota profiles of EO patients at the baseline (pink), T1 (light yellow) and T2 (yellow). Ellipses include 99% confidence area based on the standard error of the weighted average of sample coordinates. No significant segregation was found (p > 0.05, permutation test with pseudo-F ratios).
Figure 5
Figure 5
Diet and probiotic mix supplementation counteract the obesity-related dysbiotic features of the gut microbiota in elderly obese women. (A) Box plots showing the distribution of the relative abundance values of significantly altered bacterial genera over the course of the intervention (p ≤ 0.05, Wilcoxon test). For Oscillospira and Faecalibacterium, only trends were observed (p ≤ 0.08). T0, before intervention; T1, after two weeks of hypocaloric balanced Mediterranean diet; T2, after two additional weeks of diet with probiotic mixture supplementation. Samples are identified with colored dots within boxes, based on the obesity grade as assessed at T0 and T2 (pink, class I obesity—OB1; red, class II obesity—OB2; brown, class III obesity—OB3). EC, healthy non-obese elderly. *, unclassified OTU reported at higher taxonomic level. (B) Relative abundance dynamics for the genera of panel A. Changes in mean values (±SD) are shown by obesity grade (same color code as in A). The dotted line indicates the mean value in the control population (i.e., EC).

References

    1. WHO Aging and Health. [(accessed on 8 July 2019)];2018 Available online: .
    1. Seidell J.C., Halberstadt J. The global burden of obesity and the challenges of prevention. Ann. Nutr. Metab. 2015;66(Suppl. 2):7–12. doi: 10.1159/000375143.
    1. Rayner C.K., Horowitz M. Physiology of the ageing gut. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:33–38. doi: 10.1097/MCO.0b013e32835acaf4.
    1. Biagi E., Rampelli S., Turroni S., Quercia S., Candela M., Brigidi P. The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Pt BMech. Ageing Dev. 2017;165:180–184. doi: 10.1016/j.mad.2016.12.013.
    1. Kundu P., Blacher E., Elinav E., Pettersson S. Our gut microbiome: The evolving inner self. Cell. 2017;171:1481–1493. doi: 10.1016/j.cell.2017.11.024.
    1. Turroni S., Brigidi P., Cavalli A., Candela M. Microbiota-host transgenomic metabolism, bioactive molecules from the inside. J. Med. Chem. 2018;61:47–61. doi: 10.1021/acs.jmedchem.7b00244.
    1. Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., Panourgia M.P., Invidia L., Celani L., Scurti M., et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016.
    1. Geurts L., Neyrinck A.M., Delzenne N.M., Knauf C., Cani P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes. 2014;5:3–17. doi: 10.3920/BM2012.0065.
    1. Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., de Weerd H., Flannery E., Marchesi J.R., Falush D., Dinan T., Fitzgerald G., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA. 2011;108:4586–4591. doi: 10.1073/pnas.1000097107.
    1. An R., Wilms E., Masclee A.A.M., Smidt H., Zoetendal E.G., Jonkers D. Age-dependent changes in GI physiology and microbiota: Time to reconsider? Gut. 2018;67:2213–2222. doi: 10.1136/gutjnl-2017-315542.
    1. O’Toole P.W., Jeffery I.B. Microbiome-health interactions in older people. Cell. Mol. Life Sci. 2018;75:119–128. doi: 10.1007/s00018-017-2673-z.
    1. Franceshi C., Bonafe M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Karpe F., Pinnick K.E. Biology of upper-body and lower-body adipose tissue–link to whole-body phenotypes. Nat. Rev. Endocrinol. 2015;11:90–100. doi: 10.1038/nrendo.2014.185.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.M., Kennedy S., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Duncan A.E., Kau A.L., Griffin N.W., Lombard V., Henrissat B., Bain J.R., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Cani P.D. Microbiota and metabolites in metabolic diseases. Nat. Rev. Endocrinol. 2019;15:69–70. doi: 10.1038/s41574-018-0143-9.
    1. Lee C.J., Sears C.L., Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann. N. Y. Acad. Sci. 2019 doi: 10.1111/nyas.14107.
    1. Rampelli S., Guenther K., Turroni S., Wolters M., Veidebaum T., Kourides Y., Molnár D., Lissner L., Benitez-Paez A., Sanz Y., et al. Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Commun. Biol. 2018;1:222. doi: 10.1038/s42003-018-0221-5.
    1. Zmora N., Suez J., Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019;16:35–56. doi: 10.1038/s41575-018-0061-2.
    1. Zhao L., Zhang F., Ding X., Wu G., Lam Y.Y., Wang X., Fu H., Xue X., Lu C., Ma J., et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–1156. doi: 10.1126/science.aao5774.
    1. Kootte R.S., Levin E., Salojärvi J., Smits L.P., Hartstra A.V., Udayappan S.D., Hermes G., Bouter K.E., Koopen A.M., Holst J.J., et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611–619. doi: 10.1016/j.cmet.2017.09.008.
    1. Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M., et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–1094. doi: 10.1016/j.cell.2015.11.001.
    1. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., Almeida M., Quinquis B., Levenez F., Galleron N., et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.
    1. Lewis S.J., Heaton K.W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 1997;32:920–924. doi: 10.3109/00365529709011203.
    1. Yu Z., Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques. 2004;36:808–812. doi: 10.2144/04365ST04.
    1. Biagi E., Franceschi C., Rampelli S., Severgnini M., Ostan R., Turroni S., Consolandi C., Quercia S., Scurti M., Monti D., et al. Gut microbiota and extreme longevity. Curr. Biol. 2016;26:1480–1485. doi: 10.1016/j.cub.2016.04.016.
    1. Barone M., Turroni S., Rampelli S., Soverini M., D’Amico F., Biagi E., Brigidi P., Troiani E., Candela M. Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context. PLoS ONE. 2019;14:e0220619. doi: 10.1371/journal.pone.0220619.
    1. Masella A.P., Bartram A.K., Truszkowski J.M., Brown D.G., Neufeld J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012;14:13–31. doi: 10.1186/1471-2105-13-31.
    1. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303.
    1. Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S.K., Sodergren E., et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21:494–504. doi: 10.1101/gr.112730.110.
    1. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., Pini E., Nikkïla J., Monti D., Satokari R., Franceschi C., et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667. doi: 10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d.
    1. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R Package Version 2.5-6. [(accessed on 8 January 2019)];2019 Available online: .
    1. R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 8 January 2019)]. Available online:
    1. Frost F., Storck L.J., Kacprowski T., Gärtner S., Rühlemann M., Bang C., Franke A., Völker U., Aghdassi A.A., Steveling A., et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS ONE. 2019;14:e0219489. doi: 10.1371/journal.pone.0219489.
    1. Gomez-Arango L.F., Barrett H.L., Wilkinson S.A., Callaway L.K., McIntyre H.D., Morrison M., Dekker Nitert M. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes. 2018;9:189–201. doi: 10.1080/19490976.2017.1406584.
    1. Nirmalkar K., Murugesan S., Pizano-Zárate M.L., Villalobos-Flores L.E., García-González C., Morales-Hernández R.M., Nuñez-Hernández J.A., Hernández-Quiroz F., Romero-Figueroa M.D.S., Hernández-Guerrero C., et al. Gut microbiota and endothelial dysfunction markers in obese Mexican children and adolescents. Nutrients. 2018;10:2009. doi: 10.3390/nu10122009.
    1. Candela M., Biagi E., Soverini M., Consolandi C., Quercia S., Severgnini M., Peano C., Turroni S., Rampelli S., Pozzilli P., et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br. J. Nutr. 2016;116:80–93. doi: 10.1017/S0007114516001045.
    1. Konikoff T., Gophna U. Oscillospira: A central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–524. doi: 10.1016/j.tim.2016.02.015.
    1. Karlsson C.L., Onnerfält J., Xu J., Molin G., Ahrné S., Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20:2257–2261. doi: 10.1038/oby.2012.110.
    1. Wu T.R., Lin C.S., Chang C.J., Lin T.L., Martel J., Ko Y.F., Ojcius D.M., Lu C.C., Young J.D., Lai H.C. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 2019;68:248–262. doi: 10.1136/gutjnl-2017-315458.
    1. Ozato N., Saito S., Yamaguchi T., Katashima M., Tokuda I., Sawada K., Katsuragi Y., Kakuta M., Imoto S., Ihara K., et al. Blautia genus associated with visceral fat accumulation in adults 20–76 years of age. NPJ Biofilms Microbiomes. 2019;5:28. doi: 10.1038/s41522-019-0101-x.
    1. Martín R., Miquel S., Benevides L., Bridonneau C., Robert V., Hudault S., Chain F., Berteau O., Azevedo V., Chatel J.M., et al. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol. 2017;8:1226.
    1. Tilg H., Moschen A.R. Microbiota and diabetes: An evolving relationship. Gut. 2014;63:1513–1521. doi: 10.1136/gutjnl-2014-306928.
    1. Khan M.J., Gerasimidis K., Edwards C.A., Shaikh M.G. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature. J. Obes. 2016;2016:7353642. doi: 10.1155/2016/7353642.
    1. Goodrich J.K., Waters J.L., Poole A.C., Sutter J.L., Koren O., Blekhman R., Beaumont M., Van Treuren W., Knight R., Bell J.T., et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–799. doi: 10.1016/j.cell.2014.09.053.
    1. Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019;25:1096–1103. doi: 10.1038/s41591-019-0495-2.
    1. Qin Y., Roberts J.D., Grimm S.A., Lih F.B., Deterding L.J., Li R., Chrysovergis K., Wade P.A. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol. 2018;19:7. doi: 10.1186/s13059-018-1389-1.
    1. Castaner O., Goday A., Park Y.M., Lee S.H., Magkos F., Shiow S.T.E., Schröder H. The gut microbiome profile in obesity: A systematic review. Int. J. Endocrinol. 2018;2018:4095789. doi: 10.1155/2018/4095789.
    1. Le Roy C.I., Beaumont M., Jackson M.A., Steves C.J., Spector T.D., Bell J.T. Heritable components of the human fecal microbiome are associated with visceral fat. Gut Microbes. 2018;9:61–67. doi: 10.1080/19490976.2017.1356556.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009;1:6ra14. doi: 10.1126/scitranslmed.3000322.
    1. Sarmiento M.R.A., de Paula T.O., Borges F.M., Ferreira-Machado A.B., Resende J.A., Moreira A.P.B., Dutra Luquetti S.C.P., Cesar D.E., da Silva V.L., Diniz C.G. Obesity, xenobiotic intake and antimicrobial-resistance genes in the human gastrointestinal tract: A comparative study of eutrophic, overweight and obese individuals. Genes. 2019;10:349. doi: 10.3390/genes10050349.
    1. Rinninella E., Cintoni M., Raoul P., Lopetuso L.R., Scaldaferri F., Pulcini G., Miggiano G.A.D., Gasbarrini A., Mele M.C. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients. 2019;11:2393. doi: 10.3390/nu11102393.
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. Joossens M., Huys G., Cnockaert M., De Preter V., Verbeke K., Rutgeerts P., Vandamme P., Vermeire S. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011;60:631–637. doi: 10.1136/gut.2010.223263.
    1. Marchesi J.R., Dutilh B.E., Hall N., Peters W.H., Roelofs R., Boleij A., Tjalsma H. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6:e20447. doi: 10.1371/journal.pone.0020447.
    1. Karlsson F.H., Fåk F., Nookaew I., Tremaroli V., Fagerberg B., Petranovic D., Bäckhed F., Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 2012;3:1245. doi: 10.1038/ncomms2266.
    1. Jiang W., Wu N., Wang X., Chi Y., Zhang Y., Qiu X., Hu Y., Li J., Liu Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 2015;5:8096. doi: 10.1038/srep08096.
    1. Chen J., Wright K., Davis J.M., Jeraldo P., Marietta E.V., Murray J., Nelson H., Matteson E.L., Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43. doi: 10.1186/s13073-016-0299-7.
    1. Waters D.L., Ward A.L., Villareal D.T. Weight loss in obese adults 65years and older: A review of the controversy. Exp. Gerontol. 2013;48:1054–1061. doi: 10.1016/j.exger.2013.02.005.
    1. Porter Starr K.N., Orenduff M., McDonald S.R., Mulder H., Sloane R., Pieper C.F., Bales C.W. Influence of weight reduction and enhanced protein intake on biomarkers of inflammation in older adults with obesity. J. Nutr. Gerontol. Geriatr. 2019;38:33–49. doi: 10.1080/21551197.2018.1564200.
    1. Cani P.D., de Vos W.M. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front. Microbiol. 2017;8:1765. doi: 10.3389/fmicb.2017.01765.

Source: PubMed

3
購読する