Visual rehabilitation in moderate keratoconus: combined corneal wavefront-guided transepithelial photorefractive keratectomy and high-fluence accelerated corneal collagen cross-linking after intracorneal ring segment implantation

Hun Lee, David Sung Yong Kang, Byoung Jin Ha, Jin Young Choi, Eung Kweon Kim, Kyoung Yul Seo, Tae-Im Kim, Hun Lee, David Sung Yong Kang, Byoung Jin Ha, Jin Young Choi, Eung Kweon Kim, Kyoung Yul Seo, Tae-Im Kim

Abstract

Background: To investigate the effects of combined corneal wavefront-guided transepithelial photorefractive keratectomy (tPRK) and accelerated corneal collagen cross-linking (CXL) after intracorneal ring segment (ICRS) implantation in patients with moderate keratoconus.

Methods: Medical records of 23 eyes of 23 patients undergoing combined tPRK and CXL after ICRS implantation were retrospectively analyzed. Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), manifest refraction spherical equivalent (MRSE), corneal indices based on Scheimpflug tomography, higher-order aberrations (HOAs), and corneal biomechanical properties were evaluated before and after ICRS implantation, and at 1, 3, and 6 months after combined tPRK and CXL.

Results: There were significant improvements in final logMAR UDVA and logMAR CDVA, and reductions in sphere, MRSE, and all corneal indices from baseline. Significant improvements in logMAR UDVA and reductions in sphere, MRSE, maximal keratometry, keratometry at the apex, mean keratometry, and keratoconus index were noted after ICRS implantation. After tPRK and CXL, significant improvements in logMAR UDVA and logMAR CDVA, and reductions in cylinder and all corneal indices were observed. There were significant improvements in final root mean square HOAs and coma aberrations from baseline, but no changes from baseline after ICRS implantation. Significant reductions in final radius and deformation amplitude from baseline were noted.

Conclusions: Combined tPRK and accelerated CXL after ICRS implantation in moderate keratoconus appears to be a safe and effective treatment, providing an improvement in visual acuity, corneal indices, and HOAs.

Trial registration: retrospectively registered (identification no. NCT03355430 ). Date registered: 28/11/2017.

Keywords: Combined corneal wavefront-guided transepithelial photorefractive keratectomy and accelerated corneal collagen cross-linking; Intracorneal ring segment implantation; Keratoconus.

Conflict of interest statement

Ethics approval and consent to participate

Ethics approval was retrospectively obtained by the Institutional Review Board of Yonsei University College of Medicine, Seoul, South Korea (4–2016-0403). All patients provided informed written consent for their medical information to be included in analysis and for publication.

Consent for publication

Not applicable (no identifying patient data).

Competing interests

Dr. Kang is consultant to Avedro Inc. and SCHWIND eye-tech-solutions. The remaining authors have no proprietary or financial interest in the materials presented herein.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Changes in refractive outcomes, maximal keratometry, and corneal higher-ordrer aberrations in patients with moderate keratoconus who underwent combined corneal wavefront-guided transepithelial photorefractive keratectomy and high-fluence accelerated corneal collagen cross-linking after intracorneal ring segment implantation. Preop = preoperative; ICRS = intracorneal ring segment implantation; tPRK-CXL = corneal wavefront-guided transepithelial photorefractive keratectomy and corneal collagen cross-linking; MRSE = manifest refraction spherical equivalent; RMS HOAs = root mean square higher-order aberrations. Error bars represent standard error of the mean (*P < .05, **P < .01, ***P < .001)
Fig. 2
Fig. 2
In this patient with moderate keratoconus, combined corneal wavefront-guided transepithelial photorefractive keratectomy (tPRK) and high-fluence accelerated corneal collagen cross-linking (CXL) after intracorneal ring segment (ICRS) implantation achieved a progressive flattening of the cone, as compared to baseline (a). Representative corneal topography changes after ICRS implantation (b), and at 3 and 6 months after combined tPRK and accelerated CXL (c and d)
Fig. 3
Fig. 3
Difference map in patient with moderate keratoconus who underwent combined corneal wavefront-guided transepithelial photorefractive keratectomy (tPRK) and high-fluence accelerated corneal collagen cross-linking (CXL) after intracorneal ring segment (ICRS) implantation. Although the majority of curvature changes occur by combined tPRK and CXL, ICRS implantation also serves to provide 20–30% additive effects. (a) axial map (difference), left; after ICRS implantation alone versus before ICRS implantation (baseline), right; 6 months after tPRK and CXL versus after ICRS implantation alone, (b) tangential map (difference), left; after ICRS implantation alone versus before ICRS implantation (baseline), right; 6 months after tPRK and CXL versus after ICRS implantation alone

References

    1. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–1785. doi: 10.1016/S0886-3350(03)00407-3.
    1. Vinciguerra R, Romano MR, Camesasca FI, Azzolini C, Trazza S, Morenghi E, Vinciguerra P. Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology. 2013;120(5):908–916. doi: 10.1016/j.ophtha.2012.10.023.
    1. Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S. Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology. 2013;120(8):1515–1520. doi: 10.1016/j.ophtha.2013.01.012.
    1. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149(4):585–593. doi: 10.1016/j.ajo.2009.10.021.
    1. Richoz O, Mavrakanas N, Pajic B, Hafezi F. Corneal collagen cross-linking for ectasia after LASIK and photorefractive keratectomy: long-term results. Ophthalmology. 2013;120(7):1354–1359. doi: 10.1016/j.ophtha.2012.12.027.
    1. del Buey MA, Cristobal JA, Casas P, Goni P, Clavel A, Minguez E, Lanchares E, Garcia A, Calvo B. Evaluation of in vitro efficacy of combined riboflavin and ultraviolet a for Acanthamoeba isolates. Am J Ophthalmol. 2012;153(3):399–404. doi: 10.1016/j.ajo.2011.07.025.
    1. Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-a light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34(5):796–801. doi: 10.1016/j.jcrs.2007.12.039.
    1. Kanellopoulos AJ. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet a radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101. doi: 10.2147/OPTH.S27170.
    1. Elbaz U, Shen C, Lichtinger A, Zauberman NA, Goldich Y, Ziai S, Rootman DS. Accelerated versus standard corneal collagen crosslinking combined with same day phototherapeutic keratectomy and single intrastromal ring segment implantation for keratoconus. Br J Ophthalmol. 2015;99(2):155–159. doi: 10.1136/bjophthalmol-2014-304943.
    1. Ozgurhan EB, Akcay BI, Kurt T, Yildirim Y, Demirok A. Accelerated corneal collagen cross-linking in thin Keratoconic corneas. J Refract Surg. 2015;31(6):386–390. doi: 10.3928/1081597X-20150521-11.
    1. Ng AL, Chan TC, Cheng AC. Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clinical & experimental ophthalmology. 2016;44(1):8–14. doi: 10.1111/ceo.12571.
    1. Pahuja N, Kumar NR, Francis M, Shanbagh S, Shetty R, Ghosh A, Roy AS. Correlation of clinical and biomechanical outcomes of accelerated Crosslinking (9 mW/cm in 10 minutes) in Keratoconus with molecular expression of Ectasia-related genes. Curr Eye Res. 2016;41(11):1419–23. doi: 10.3109/02713683.2015.1133831.
    1. Ruberti JW, Roy AS, Roberts CJ. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng. 2011;13:269–295. doi: 10.1146/annurev-bioeng-070909-105243.
    1. Lee H, Yong Kang DS, Ha BJ, Choi JY, Kim EK, Seo KY, Kim TI. Comparison of outcomes between combined Transepithelial photorefractive keratectomy with and without accelerated corneal collagen cross-linking: a 1-year study. Cornea. 2017;36(10):1213–1220.
    1. Lee H, Roberts CJ, Ambrosio R, Jr, Elsheikh A, Kang DSY, Kim TI. Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients. J Cataract Refract Surg. 2017;43(7):937–945. doi: 10.1016/j.jcrs.2017.04.036.
    1. Tomita M, Yoshida Y, Yamamoto Y, Mita M, Waring Gt: In vivo confocal laser microscopy of morphologic changes after simultaneous LASIK and accelerated collagen crosslinking for myopia: one-year results. J Cataract Refract Surg 2014, 40(6):981-990.
    1. Colin J, Cochener B, Savary G, Malet F, Holmes-Higgin D. INTACS inserts for treating keratoconus: one-year results. Ophthalmology. 2001;108(8):1409–1414. doi: 10.1016/S0161-6420(01)00646-7.
    1. Alio JL, Artola A, Ruiz-Moreno JM, Hassanein A, Galal A, Awadalla MA. Changes in keratoconic corneas after intracorneal ring segment explantation and reimplantation. Ophthalmology. 2004;111(4):747–751. doi: 10.1016/j.ophtha.2003.08.024.
    1. Alio JL, Shabayek MH, Artola A. Intracorneal ring segments for keratoconus correction: long-term follow-up. J Cataract Refract Surg. 2006;32(6):978–985. doi: 10.1016/j.jcrs.2006.02.044.
    1. Perez-Merino P, Ortiz S, Alejandre N, de Castro A, Jimenez-Alfaro I, Marcos S. Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments. Am J Ophthalmol. 2014;157(1):116–127. doi: 10.1016/j.ajo.2013.08.017.
    1. Pinero DP, Alio JL, Teus MA, Barraquer RI, Uceda-Montanes A. Modeling the intracorneal ring segment effect in keratoconus using refractive, keratometric, and corneal aberrometric data. Invest Ophthalmol Vis Sci. 2010;51(11):5583–5591. doi: 10.1167/iovs.09-5017.
    1. Coskunseven E, Jankov MR, 2nd, Hafezi F, Atun S, Arslan E, Kymionis GD. Effect of treatment sequence in combined intrastromal corneal rings and corneal collagen crosslinking for keratoconus. J Cataract Refract Surg. 2009;35(12):2084–2091. doi: 10.1016/j.jcrs.2009.07.008.
    1. Ertan A, Karacal H, Kamburoglu G. Refractive and topographic results of transepithelial cross-linking treatment in eyes with intacs. Cornea. 2009;28(7):719–723. doi: 10.1097/ICO.0b013e318191b83d.
    1. Kanellopoulos AJ, Binder PS. Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea. 2007;26(7):891–895. doi: 10.1097/ICO.0b013e318074e424.
    1. Kanellopoulos AJ, Binder PS. Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the athens protocol. J Refract Surg. 2011;27(5):323–331. doi: 10.3928/1081597X-20101105-01.
    1. Kymionis GD, Portaliou DM, Kounis GA, Limnopoulou AN, Kontadakis GA, Grentzelos MA. Simultaneous topography-guided photorefractive keratectomy followed by corneal collagen cross-linking for keratoconus. Am J Ophthalmol. 2011;152(5):748–755. doi: 10.1016/j.ajo.2011.04.033.
    1. Kymionis GD, Kontadakis GA, Kounis GA, Portaliou DM, Karavitaki AE, Magarakis M, Yoo S, Pallikaris IG. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus. J Refract Surg. 2009;25(9):S807–S811. doi: 10.3928/1081597X-20090813-09.
    1. Al-Tuwairqi W, Sinjab MM. Intracorneal ring segments implantation followed by same-day topography-guided PRK and corneal collagen CXL in low to moderate keratoconus. J Refract Surg. 2013;29(1):59–63. doi: 10.3928/1081597X-20121228-04.
    1. Coskunseven E, Jankov MR, 2nd, Grentzelos MA, Plaka AD, Limnopoulou AN, Kymionis GD. Topography-guided transepithelial PRK after intracorneal ring segments implantation and corneal collagen CXL in a three-step procedure for keratoconus. J Refract Surg. 2013;29(1):54–58. doi: 10.3928/1081597X-20121217-01.
    1. Zeraid FM, Jawkhab AA, Al-Tuwairqi WS, Osuagwu UL. Visual rehabilitation in low-moderate keratoconus: intracorneal ring segment implantation followed by same-day topography-guided photorefractive keratectomy and collagen cross linking. International journal of ophthalmology. 2014;7(5):800–806.
    1. Shen Y, Chen Z, Knorz MC, Li M, Zhao J, Zhou X. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg. 2014;30(5):310–318. doi: 10.3928/1081597X-20140422-01.
    1. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40(6):1013–1020. doi: 10.1016/j.jcrs.2013.12.012.
    1. Shen Y, Zhao J, Yao P, Miao H, Niu L, Wang X, Zhou X. Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One. 2014;9(8):e103893. doi: 10.1371/journal.pone.0103893.
    1. Ambrósio R, Jr, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, Belin MW, Roberts CJ. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Revista Brasileira de Oftalmologia. 2013;72:99–102. doi: 10.1590/S0034-72802013000200005.
    1. Wang YM, Chan TCY, Yu M, Jhanji V. Comparison of corneal dynamic and Tomographic analysis in normal, Forme Fruste Keratoconic, and Keratoconic eyes. J Refract Surg. 2017;33(9):632–638. doi: 10.3928/1081597X-20170621-09.
    1. Vinciguerra R, Ambrosio R, Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P. Detection of Keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–810. doi: 10.3928/1081597X-20160629-01.
    1. Roberts CJ, Mahmoud AM, Bons JP, Hossain A, Elsheikh A, Vinciguerra R, Vinciguerra P, Ambrosio R., Jr Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic Scheimpflug analyzer. J Refract Surg. 2017;33(4):266–273. doi: 10.3928/1081597X-20161221-03.
    1. Krumeich JH, Daniel J, Knulle A. Live-epikeratophakia for keratoconus. J Cataract Refract Surg. 1998;24(4):456–463. doi: 10.1016/S0886-3350(98)80284-8.
    1. Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optometry and vision science : official publication of the American Academy of Optometry. 2013;90(1):e1–e8. doi: 10.1097/OPX.0b013e318279eb87.
    1. Kenney MC, Nesburn AB, Burgeson RE, Butkowski RJ, Ljubimov AV. Abnormalities of the extracellular matrix in keratoconus corneas. Cornea. 1997;16(3):345–351. doi: 10.1097/00003226-199705000-00016.
    1. Radner W, Zehetmayer M, Skorpik C, Mallinger R. Altered organization of collagen in the apex of keratoconus corneas. Ophthalmic Res. 1998;30(5):327–332. doi: 10.1159/000055492.
    1. Kaldawy RM, Wagner J, Ching S, Seigel GM. Evidence of apoptotic cell death in keratoconus. Cornea. 2002;21(2):206–209. doi: 10.1097/00003226-200203000-00017.
    1. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi: 10.1016/S0002-9394(02)02220-1.
    1. Kanellopoulos AJ. Long-term safety and efficacy follow-up of prophylactic higher fluence collagen cross-linking in high myopic laser-assisted in situ keratomileusis. Clin Ophthalmol. 2012;6:1125–1130. doi: 10.2147/OPTH.S31256.
    1. Kanellopoulos AJ, Asimellis G, Karabatsas C. Comparison of prophylactic higher fluence corneal cross-linking to control, in myopic LASIK, one year results. Clin Ophthalmol. 2014;8:2373–2381. doi: 10.2147/OPTH.S68372.
    1. O'Brart DP, Kwong TQ, Patel P, McDonald RJ, O'Brart NA. Long-term follow-up of riboflavin/ultraviolet a (370 nm) corneal collagen cross-linking to halt the progression of keratoconus. Br J Ophthalmol. 2013;97(4):433–437. doi: 10.1136/bjophthalmol-2012-302556.
    1. Chan CC, Sharma M, Wachler BS. Effect of inferior-segment Intacs with and without C3-R on keratoconus. J Cataract Refract Surg. 2007;33(1):75–80. doi: 10.1016/j.jcrs.2006.09.012.
    1. El-Raggal TM. Sequential versus concurrent KERARINGS insertion and corneal collagen cross-linking for keratoconus. Br J Ophthalmol. 2011;95(1):37–41. doi: 10.1136/bjo.2010.179580.
    1. Iovieno A, Legare ME, Rootman DB, Yeung SN, Kim P, Rootman DS. Intracorneal ring segments implantation followed by same-day photorefractive keratectomy and corneal collagen cross-linking in keratoconus. J Refract Surg. 2011;27(12):915–918. doi: 10.3928/1081597X-20111103-03.
    1. Alio JL, Pinero DP, Aleson A, Teus MA, Barraquer RI, Murta J, Maldonado MJ, Castro de Luna G, Gutierrez R, Villa C, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg. 2011;37(3):552–568. doi: 10.1016/j.jcrs.2010.10.046.
    1. Pinero DP, Alio JL, Barraquer RI, Michael R, Jimenez R. Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest Ophthalmol Vis Sci. 2010;51(4):1948–1955. doi: 10.1167/iovs.09-4177.
    1. Mihaltz K, Kovacs I, Kranitz K, Erdei G, Nemeth J, Nagy ZZ. Mechanism of aberration balance and the effect on retinal image quality in keratoconus: optical and visual characteristics of keratoconus. J Cataract Refract Surg. 2011;37(5):914–922. doi: 10.1016/j.jcrs.2010.12.040.
    1. Maeda N, Fujikado T, Kuroda T, Mihashi T, Hirohara Y, Nishida K, Watanabe H, Tano Y. Wavefront aberrations measured with Hartmann-shack sensor in patients with keratoconus. Ophthalmology. 2002;109(11):1996–2003. doi: 10.1016/S0161-6420(02)01279-4.
    1. Schlegel Z, Lteif Y, Bains HS, Gatinel D. Total, corneal, and internal ocular optical aberrations in patients with keratoconus. J Refract Surg. 2009;25(10 Suppl):S951–S957. doi: 10.3928/1081597X-20090915-10.
    1. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119(12):2425–2433. doi: 10.1016/j.ophtha.2012.06.023.
    1. Nemeth G, Hassan Z, Csutak A, Szalai E, Berta A, Modis L., Jr Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29(8):558–563. doi: 10.3928/1081597X-20130719-06.

Source: PubMed

3
購読する