Effect of Early Supraglottic Airway Device Insertion on Chest Compression Fraction during Simulated Out-of-Hospital Cardiac Arrest: Randomised Controlled Trial

Loric Stuby, Laurent Jampen, Julien Sierro, Maxime Bergeron, Erik Paus, Thierry Spichiger, Laurent Suppan, David Thurre, Loric Stuby, Laurent Jampen, Julien Sierro, Maxime Bergeron, Erik Paus, Thierry Spichiger, Laurent Suppan, David Thurre

Abstract

Early insertion of a supraglottic airway (SGA) device could improve chest compression fraction by allowing providers to perform continuous chest compressions or by shortening the interruptions needed to deliver ventilations. SGA devices do not require the same expertise as endotracheal intubation. This study aimed to determine whether the immediate insertion of an i-gel® while providing continuous chest compressions with asynchronous ventilations could generate higher CCFs than the standard 30:2 approach using a face-mask in a simulation of out-of-hospital cardiac arrest. A multicentre, parallel, randomised, superiority, simulation study was carried out. The primary outcome was the difference in CCF during the first two minutes of resuscitation. Overall and per-cycle CCF quality of compressions and ventilations parameters were also compared. Among thirteen teams of two participants, the early insertion of an i-gel® resulted in higher CCFs during the first two minutes (89.0% vs. 83.6%, p = 0.001). Overall and per-cycle CCF were consistently higher in the i-gel® group, even after the 30:2 alternation had been resumed. In the i-gel® group, ventilation parameters were enhanced, but compressions were significantly shallower (4.6 cm vs. 5.2 cm, p = 0.007). This latter issue must be addressed before clinical trials can be considered.

Keywords: CPR; Cardiac Arrest; Chest Compression Fraction; Emergency Medical Services; Supraglottic Airway Device; airway; i-gel®; paramedics; prehospital; resuscitation.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript or in the decision to publish the results.

Trial Registration: NCT04736446 (3 February 2021).

Figures

Figure 1
Figure 1
Study sequence.
Figure 2
Figure 2
Study flowchart.
Figure 3
Figure 3
Proportions of compressions below, within and above depth target value.
Figure 4
Figure 4
Proportions of ventilations below, within and above volume target value.

References

    1. Panchal A.R., Bartos J.A., Cabañas J.G., Donnino M.W., Drennan I.R., Hirsch K.G., Kudenchuk P.J., Kurz M.C., Lavonas E.J., Morley P.T., et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142:S366–S468. doi: 10.1161/CIR.0000000000000916.
    1. Soar J., Böttiger B.W., Carli P., Couper K., Deakin C.D., Djärv T., Lott C., Olasveengen T., Paal P., Pellis T., et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation. 2021;161:115–151. doi: 10.1016/j.resuscitation.2021.02.010.
    1. Rea T., Olsufka M., Yin L., Maynard C., Cobb L. The relationship between chest compression fraction and outcome from ventricular fibrillation arrests in prolonged resuscitations. Resuscitation. 2014;85:879–884. doi: 10.1016/j.resuscitation.2014.02.026.
    1. Vaillancourt C., Everson-Stewart S., Christenson J., Andrusiek D., Powell J., Nichol G., Cheskes S., Aufderheide T.P., Berg R., Stiell I. The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. Resuscitation. 2011;82:1501–1507. doi: 10.1016/j.resuscitation.2011.07.011.
    1. Uppiretla A.K., Gangalal G.M., Rao S., Bosco D.D., Shareef S.M., Sampath V. Effects of Chest Compression Fraction on Return of Spontaneous Circulation in Patients with Cardiac Arrest: A Brief Report. Adv. J. Emerg. Med. 2019;4:e8. doi: 10.22114/ajem.v0i0.147.
    1. Christenson J., Andrusiek D., Everson-Stewart S., Kudenchuk P., Hostler D., Powell J., Callaway C., Bishop D., Vaillancourt C., Davis D., et al. Chest Compression Fraction Determines Survival in Patients with out-of-Hospital Ventricular Fibrillation. Circulation. 2009;120:1241–1247. doi: 10.1161/CIRCULATIONAHA.109.852202.
    1. Vaillancourt C., Petersen A., Meier E.N., Christenson J., Menegazzi J.J., Aufderheide T.P., Nichol G., Berg R., Callaway C.W., Idris A.H., et al. The impact of increased chest compression fraction on survival for out-of-hospital cardiac arrest patients with a non-shockable initial rhythm. Resuscitation. 2020;154:93–100. doi: 10.1016/j.resuscitation.2020.06.016.
    1. Wik L., Olsen J.-A., Persse D., Sterz F., Lozano M., Brouwer M.A., Westfall M., Souders C.M., Travis D.T., Herken U.R., et al. Why do some studies find that CPR fraction is not a predictor of survival? Resuscitation. 2016;104:59–62. doi: 10.1016/j.resuscitation.2016.04.013.
    1. Bobrow B.J., Clark L.L., Ewy G.A., Chikani V., Sanders A.B., Berg R.A., Richman P.B., Kern K.B. Minimally Interrupted Cardiac Resuscitation by Emergency Medical Services for out-of-Hospital Cardiac Arrest. JAMA. 2008;299:1158–1165. doi: 10.1001/jama.299.10.1158.
    1. Shimizu K., Wakasugi M., Kawagishi T., Hatano T., Fuchigami T., Okudera H. Effect of Advanced Airway Management by Paramedics during out-of-Hospital Cardiac Arrest on Chest Compression Fraction and Return of Spontaneous Circulation. Open Access Emerg. Med. 2021;13:305–310. doi: 10.2147/OAEM.S319385.
    1. Newell C., Grier S., Soar J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Crit. Care. 2018;22:190. doi: 10.1186/s13054-018-2121-y.
    1. Granfeldt A., Avis S.R., Nicholson T.C., Holmberg M.J., Moskowitz A., Coker A., Berg K.M., Parr M., Donnino M.W., Soar J., et al. Advanced airway management during adult cardiac arrest: A systematic review. Resuscitation. 2019;139:133–143. doi: 10.1016/j.resuscitation.2019.04.003.
    1. Olasveengen T., Mancini M., Berg R., Brooks S., Castren M., Chung S., Considine J., Escalante R. CPR: Chest Compression to Ventilation Ratio—EMS Delivered (BLS): Systematic Review. [(accessed on 12 February 2021)]. Available online: .
    1. Carney N., Totten A.M., Cheney T., Jungbauer R., Neth M.R., Weeks C., Davis-O’Reilly C., Fu R., Yu Y., Chou R., et al. Prehospital Airway Management: A Systematic Review. Prehospital Emerg. Care. 2021:1–12. doi: 10.1080/10903127.2021.1940400.
    1. Malinverni S., Bartiaux M., Cavallotto F., De Longueville D., Mols P., Gorlicki J., Adnet F. Does endotracheal intubation increases chest compression fraction in out of hospital cardiac arrest: A substudy of the CAAM trial. Resuscitation. 2019;137:35–40. doi: 10.1016/j.resuscitation.2019.01.032.
    1. Kurz M.C., Prince D.K., Christenson J., Carlson J., Stub D., Cheskes S., Lin S., Aziz M., Austin M., Vaillancourt C., et al. Association of advanced airway device with chest compression fraction during out-of-hospital cardiopulmonary arrest. Resuscitation. 2016;98:35–40. doi: 10.1016/j.resuscitation.2015.10.011.
    1. Jensen J.L., Cheung K.W., Tallon J.M., Travers A.H. Comparison of tracheal intubation and alternative airway techniques performed in the prehospital setting by paramedics: A systematic review. Can. J. Emerg. Med. 2010;12:135–140. doi: 10.1017/S1481803500012161.
    1. Saracoglu A., Saracoglu K. Advanced airway management in out-of-hospital cardiac arrest—to intubate or not to intubate: A narrative review of the existing literature. Anaesthesiol. Intensive Ther. 2020;52:425–433. doi: 10.5114/ait.2020.101182.
    1. Buis M.L., Maissan I.M., Hoeks S.E., Klimek M., Stolker R.J. Defining the learning curve for endotracheal intubation using direct laryngoscopy: A systematic review. Resuscitation. 2016;99:63–71. doi: 10.1016/j.resuscitation.2015.11.005.
    1. Chan M., Fehlmann C.A., Pasquier M., Suppan L., Savoldelli G.L. Endotracheal Intubation Success Rate in an Urban, Supervised, Resident-Staffed Emergency Mobile System: An 11-Year Retrospective Cohort Study. J. Clin. Med. 2020;9:238. doi: 10.3390/jcm9010238.
    1. Duckett J., Fell P., Han K., Kimber C., Taylor C. Introduction of the i-gel supraglottic airway device for prehospital airway management in a UK ambulance service. Emerg. Med. J. 2014;31:505–507. doi: 10.1136/emermed-2012-202126.
    1. Wharton N.M., Gibbison B., Gabbott D.A., Haslam G.M., Muchatuta N., Cook T.M. I-gel insertion by novices in manikins and patients. Anaesthesia. 2008;63:991–995. doi: 10.1111/j.1365-2044.2008.05542.x.
    1. Leventis C., Chalkias A., Sampanis M.A., Foulidou X., Xanthos T. Emergency airway management by paramedics: Comparison between standard endotracheal intubation, Laryngeal Mask Airway, and I-Gel. Eur. J. Emerg. Med. 2014;21:371–373. doi: 10.1097/MEJ.0000000000000101.
    1. Castle N., Owen R., Hann M., Naidoo R., Reeves D. Assessment of the speed and ease of insertion of three supraglottic airway devices by paramedics: A manikin study. Emerg. Med. J. 2010;27:860–863. doi: 10.1136/emj.2009.084343.
    1. Goliasch G., Ruetzler A., Fischer H., Frass M., Sessler D.I., Ruetzler K. Evaluation of advanced airway management in absolutely inexperienced hands: A randomized manikin trial. Eur. J. Emerg. Med. 2013;20:310–314. doi: 10.1097/MEJ.0b013e328358455e.
    1. Ruetzler K., Roessler B., Potura L., Priemayr A., Robak O., Schuster E., Frass M. Performance and skill retention of intubation by paramedics using seven different airway devices—A manikin study. Resuscitation. 2011;82:593–597. doi: 10.1016/j.resuscitation.2011.01.008.
    1. Chauhan G., Nayar P., Seth A., Gupta K., Panwar M., Agrawal N. Comparison of clinical performance of the I-gel with LMA proseal. J. Anaesthesiol. Clin. Pharmacol. 2013;29:56–60. doi: 10.4103/0970-9185.105798.
    1. Gabbott D.A., Beringer R. The iGEL supraglottic airway: A potential role for resuscitation? Resuscitation. 2007;73:161–162. doi: 10.1016/j.resuscitation.2006.10.026.
    1. Middleton P.M., Simpson P., Thomas R., Bendall J.C. Higher insertion success with the i-gel® supraglottic airway in out-of-hospital cardiac arrest: A randomised controlled trial. Resuscitation. 2014;85:893–897. doi: 10.1016/j.resuscitation.2014.02.021.
    1. Häske D., Gaier G., Heinemann N., Schempf B., Renz J.-U. Minimal training for first responders with the i-gel™ leads to successful use in prehospital cardiopulmonary resuscitation. Resuscitation. 2019;134:167–168. doi: 10.1016/j.resuscitation.2018.12.010.
    1. Theiler L., Gutzmann M., Kleine-Brueggeney M., Urwyler N., Kaempfen B., Greif R. i-gel ™ supraglottic airway in clinical practice: A prospective observational multicentre study. Br. J. Anaesth. 2012;109:990–995. doi: 10.1093/bja/aes309.
    1. Benger J.R., Kirby K., Black S., Brett S.J., Clout M., Lazaroo M.J., Nolan J., Reeves B.C., Robinson M., Scott L.J., et al. Effect of a Strategy of a Supraglottic Airway Device vs. Tracheal Intubation during out-of-Hospital Cardiac Arrest on Functional Outcome. JAMA. 2018;320:779–791. doi: 10.1001/jama.2018.11597.
    1. Stone B., Chantler P., Baskett P. The incidence of regurgitation during cardiopulmonary resuscitation: A comparison between the bag valve mask and laryngeal mask airway: The AIRWAYS-2 randomized clinical trial. Resuscitation. 1998;38:3–6. doi: 10.1016/S0300-9572(98)00068-9.
    1. Piegeler T., Roessler B., Goliasch G., Fischer H., Schlaepfer M., Lang S., Ruetzler K. Evaluation of six different airway devices regarding regurgitation and pulmonary aspiration during cardio-pulmonary resuscitation (CPR)—A human cadaver pilot study. Resuscitation. 2016;102:70–74. doi: 10.1016/j.resuscitation.2016.02.017.
    1. Häske D., Schempf B., Gaier G., Niederberger C. Performance of the i-gel™ during pre-hospital cardiopulmonary resuscitation. Resuscitation. 2013;84:1229–1232. doi: 10.1016/j.resuscitation.2013.04.025.
    1. Soar J., Berg K.M., Andersen L.W., Böttiger B.W., Cacciola S., Callaway C.W., Couper K., Cronberg T., D’Arrigo S., Deakin C.D., et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2020;156:A80–A119. doi: 10.1016/j.resuscitation.2020.09.012.
    1. Nolan J.P., Maconochie I., Soar J., Olasveengen T.M., Greif R., Wyckoff M.H., Singletary E.M., Aickin R., Berg K.M., Mancini M.E., et al. Executive Summary: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2020;142:S2–S27. doi: 10.1161/CIR.0000000000000890.
    1. Chan A.-W., Tetzlaff J.M., Altman D.G., Laupacis A., Gøtzsche P.C., Krleža-Jerić K., Hróbjartsson A., Mann H., Dickersin K., Berlin J.A., et al. SPIRIT 2013 Statement: Defining Standard Protocol Items for Clinical Trials. Ann. Intern. Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Stuby L., Jampen L., Sierro J., Paus E., Spichiger T., Suppan L., Thurre D. Effect on Chest Compression Fraction of Continuous Manual Compressions with Asynchronous Ventilations Using an i-gel® versus 30:2 Approach during Simulated out-of-Hospital Cardiac Arrest: Protocol for a Manikin Multicenter Randomized Controlled Trial. Healthcare. 2021;9:354. doi: 10.3390/healthcare9030354.
    1. Schulz K.F., Altman D.G., Moher D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Keamk-Create Random and Balanced Teams. [(accessed on 5 January 2021)]. Available online:
    1. Create a Blocked Randomisation List. Sealed Envelope. [(accessed on 6 December 2020)]. Available online: .
    1. Peyton J.W.R. Teaching & Learning in Medical Practice. Manticore Europe Ltd.; Rickmansworth, Herts, UK: 1998.
    1. Stuby L., Currat L., Gartner B., Mayoraz M., Harbarth S., Suppan L., Suppan M. Impact of Face-to-Face Teaching in Addition to Electronic Learning on Personal Protective Equipment Doffing Proficiency in Student Paramedics: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2021;10:e26927. doi: 10.2196/26927.
    1. Giacomino K., Caliesch R., Sattelmayer K.M. The effectiveness of the Peyton’s 4-step teaching approach on skill acquisition of procedures in health professions education: A systematic review and meta-analysis with integrated meta-regression. PeerJ. 2020;8:e10129. doi: 10.7717/peerj.10129.
    1. Dörges V., Ocker H., Hagelberg S., Wenzel V., Schmucker P. Optimisation of tidal volumes given with self-inflatable bags without additional oxygen. Resuscitation. 2000;43:195–199. doi: 10.1016/s0300-9572(99)00148-3.
    1. Dörges V., Ocker H., Hagelberg S., Wenzel V., Idris A.H., Schmucker P. Smaller tidal volumes with room-air are not sufficient to ensure adequate oxygenation during bag–valve–mask ventilation. Resuscitation. 2000;44:37–41. doi: 10.1016/S0300-9572(99)00161-6.
    1. Baskett P., Nolan J., Parr M. Tidal volumes which are perceived to be adequate for resuscitation. Resuscitation. 1996;31:231–234. doi: 10.1016/0300-9572(96)00994-X.
    1. Aramendi E., Lu Y., Chang M.P., Elola A., Irusta U., Owens P., Idris A.H. A novel technique to assess the quality of ventilation during pre-hospital cardiopulmonary resuscitation. Resuscitation. 2018;132:41–46. doi: 10.1016/j.resuscitation.2018.08.016.
    1. Neto A.S., Cardoso S.O., Manetta J.A., Pereira V.G.M., Espósito D.C., Pasqualucci M.D.O.P., Damasceno M.C.T., Schultz M.J. Association between Use of Lung-Protective Ventilation with Lower Tidal Volumes and Clinical Outcomes among Patients without Acute Respiratory Distress Syndrome: A Meta-Analysis. JAMA. 2012;308:1651–1659. doi: 10.1001/jama.2012.13730.
    1. Stuby L. CPR—Early Insertion Effect of a Supraglottic Airway Device on CCF in Simulated OHCA—PHP Code for Data Extraction from SimMan® 3G. Mendeley Data, V1. 2021. [(accessed on 30 November 2021)]. Available online: .
    1. Christiansen T., Lauritsen J. EpiData Software. [(accessed on 18 December 2020)]. Available online:
    1. Stuby L., Thurre D., Jampen L., Spichiger T., Sierro J., Bergeron M., Paus E. CPR-Early Insertion Effect of a Supraglottic Airway Device on CCF in simulated OHCA-Dataset. Mendeley Data, V1. 2021. [(accessed on 30 November 2021)]. Available online: .
    1. Sealed Envelope Power Calculator for Continuous Outcome Superiority Trial. [(accessed on 8 June 2021)]. Available online:
    1. Vogt L., Sellmann T., Wetzchewald D., Schwager H., Russo S., Marsch S. Effects of Bag Mask Ventilation and Advanced Airway Management on Adherence to Ventilation Recommendations and Chest Compression Fraction: A Prospective Randomized Simulator-Based Trial. J. Clin. Med. 2020;9:2045. doi: 10.3390/jcm9072045.
    1. Cereceda-Sánchez F., Molina-Mula J., Clar-Terradas J., Mascaró-Galmes A., Montero-París P., Martinez-Cuellar N. 7 Bag-valve-mask vs. laryngeal mask (I-Gel®) during basic instrumental CPR with capnography monitoring: Preliminary results of a randomized cluster trial. BMJ Open. 2019;9:A3. doi: 10.1136/bmjopen-2019-ems.7.
    1. Lavonas E.J., Ohshimo S., Nation K., Van de Voorde P., Nuthall G., Maconochie I., Torabi N., Morrison L.J., DeCaen A., Atkins D., et al. International Liaison Committee on Resuscitation (ILCOR) Pediatric Life Support Task Force Advanced Airway Interventions for Paediatric Cardiac Arrest: A Systematic Review and Meta-Analysis. Resuscitation. 2019;138:114–128. doi: 10.1016/j.resuscitation.2019.02.040.
    1. Jensen J.L., Walker M., Leroux Y., Carter A. Chest Compression Fraction in Simulated Cardiac Arrest Management by Primary Care Paramedics: King Laryngeal Tube Airway Versus Basic Airway Management. Prehospital Emerg. Care. 2013;17:285–290. doi: 10.3109/10903127.2012.744784.
    1. Koka A., Suppan L., Cottet P., Carrera E., Stuby L., Suppan M. Teaching the National Institutes of Health Stroke Scale to Paramedics (E-Learning vs. Video): Randomized Controlled Trial. J. Med Internet Res. 2020;22:e18358. doi: 10.2196/18358.
    1. Suppan L., Abbas M., Stuby L., Cottet P., Larribau R., Golay E., Iten A., Harbarth S., Gartner B., Suppan M. Effect of an E-Learning Module on Personal Protective Equipment Proficiency among Prehospital Personnel: Web-Based Randomized Controlled Trial. J. Med. Internet Res. 2020;22:e21265. doi: 10.2196/21265.
    1. Suppan L., Stuby L., Gartner B., Larribau R., Iten A., Abbas M., Harbarth S., Suppan M. Impact of an e-learning module on personal protective equipment knowledge in student paramedics: A randomized controlled trial. Antimicrob. Resist. Infect. Control. 2020;9:1–9. doi: 10.1186/s13756-020-00849-9.
    1. Perkins G.D., Stephenson B.T., Smith C.M., Gao F. A comparison between over-the-head and standard cardiopulmonary resuscitation. Resuscitation. 2004;61:155–161. doi: 10.1016/j.resuscitation.2004.01.006.
    1. Chi C.-H., Tsou J.-Y., Su F.-C. Comparison of chest compression kinematics associated with over-the-head and standard cardiopulmonary resuscitation. Am. J. Emerg. Med. 2009;27:1112–1116. doi: 10.1016/j.ajem.2008.08.029.
    1. Ćwiertnia M., Kawecki M., Ilczak T., Mikulska M., Dutka M., Bobiński R. Comparison of standard and over-the-head method of chest compressions during cardiopulmonary resuscitation—A simulation study. BMC Emerg. Med. 2019;19:73. doi: 10.1186/s12873-019-0292-8.
    1. Maisch S., Issleib M., Kuhls B., Mueller J., Horlacher T., Goetz A.E., Schmidt G.N. A Comparison between over-The-Head and Standard Cardiopulmonary Resuscitation Performed by Two Rescuers: A Simulation Study. J. Emerg. Med. 2010;39:369–376. doi: 10.1016/j.jemermed.2009.04.055.
    1. Davis D.P., Graham P.G., Husa R.D., Lawrence B., Minokadeh A., Altieri K., Sell R.E. A performance improvement-based resuscitation programme reduces arrest incidence and increases survival from in-hospital cardiac arrest. Resuscitation. 2015;92:63–69. doi: 10.1016/j.resuscitation.2015.04.008.
    1. Bobrow B.J., Vadeboncoeur T.F., Stolz U., Silver A.E., Tobin J.M., Crawford S.A., Mason T.K., Schirmer J., Smith G.A., Spaite D. The Influence of Scenario-Based Training and Real-Time Audiovisual Feedback on out-of-Hospital Cardiopulmonary Resuscitation Quality and Survival from out-of-Hospital Cardiac Arrest. Ann. Emerg. Med. 2013;62:47–56.e1. doi: 10.1016/j.annemergmed.2012.12.020.
    1. Smith K., Dyson K., Stub D., Magnuson N., Anastasopoulos K., Bernard S. 29 Feasibility of using a defibrillator to provide real-time and post-event feedback to paramedics on the quality of their CPR. BMJ Open. 2019;9:A11. doi: 10.1136/bmjopen-2019-ems.29.
    1. Lakomek F., Lukas R.-P., Brinkrolf P., Mennewisch A., Steinsiek N., Gutendorf P., Sudowe H., Heller M., Kwiecien R., Zarbock A., et al. Real-time feedback improves chest compression quality in out-of-hospital cardiac arrest: A prospective cohort study. PLoS ONE. 2020;15:e0229431. doi: 10.1371/journal.pone.0229431.
    1. Campbell J.P., Maxey V.A., Watson W.A. Hawthorne Effect: Implications for Prehospital Research. Ann. Emerg. Med. 1995;26:590–594. doi: 10.1016/S0196-0644(95)70009-9.

Source: PubMed

3
購読する