Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study

COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators

Abstract

Purpose: To describe acute respiratory distress syndrome (ARDS) severity, ventilation management, and the outcomes of ICU patients with laboratory-confirmed COVID-19 and to determine risk factors of 90-day mortality post-ICU admission.

Methods: COVID-ICU is a multi-center, prospective cohort study conducted in 138 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, adjunctive interventions, ICU length-of-stay, and survival data were collected.

Results: From February 25 to May 4, 2020, 4643 patients (median [IQR] age 63 [54-71] years and SAPS II 37 [28-50]) were admitted in ICU, with day-90 post-ICU admission status available for 4244. On ICU admission, standard oxygen therapy, high-flow oxygen, and non-invasive ventilation were applied to 29%, 19%, and 6% patients, respectively. 2635 (63%) patients were intubated during the first 24 h whereas overall 3376 (80%) received invasive mechanical ventilation (MV) at one point during their ICU stay. Median (IQR) positive end-expiratory and plateau pressures were 12 (10-14) cmH2O, and 24 (21-27) cmH2O, respectively. The mechanical power transmitted by the MV to the lung was 26.5 (18.6-34.9) J/min. Paralyzing agents and prone position were applied to 88% and 70% of patients intubated at Day-1, respectively. Pulmonary embolism and ventilator-associated pneumonia were diagnosed in 207 (9%) and 1209 (58%) of these patients. On day 90, 1298/4244 (31%) patients had died. Among patients who received invasive or non-invasive ventilation on the day of ICU admission, day-90 mortality increased with the severity of ARDS at ICU admission (30%, 34%, and 50% for mild, moderate, and severe ARDS, respectively) and decreased from 42 to 25% over the study period. Early independent predictors of 90-day mortality were older age, immunosuppression, severe obesity, diabetes, higher renal and cardiovascular SOFA score components, lower PaO2/FiO2 ratio and a shorter time between first symptoms and ICU admission.

Conclusion: Among more than 4000 critically ill patients with COVID-19 admitted to our ICUs, 90-day mortality was 31% and decreased from 42 to 25% over the study period. Mortality was higher in older, diabetic, obese and severe ARDS patients.

Keywords: Acute respiratory distress syndrome; COVID-19; Mechanical ventilation; Mortality risk factor; Outcome.

Conflict of interest statement

MS reported personal fees from Getinge, Drager, and Xenios, outside the submitted work. AD reports personal fees from Medtronic, grants, personal fees and non-financial support from Philips, personal fees from Baxter, personal fees from Hamilton, personal fees and non-financial support from Fisher & Paykel, grants from French Ministry of Health, personal fees from Getinge, grants and personal fees from Respinor, grants and non-financial support from Lungpacer, outside the submitted work. AM reported personal fees from Faron Pharmaceuticals, Air Liquid Medical Systems, Pfizer, Resmed and Draeger and grants and personal fees from Fisher and Paykel and Covidien, outside this work. MD reported personal fees from Lungpacer. AK reported personal fees from Aspen, Aguettant and MSD. No other disclosures were reported.

Figures

Fig. 1
Fig. 1
Flowchart of patients screening and inclusion. ICU intensive care unit
Fig. 2
Fig. 2
Kaplan–Meier survival estimates during the 90 days following ICU admission, according to A) Acute Respiratory Distress Syndrome Severity in patients on invasive mechanical ventilation or non-invasive ventilation at Day-1; B) age categories; C) ARDS severity progression within 7 days in patients with mild ARDS at Day-1*; D) ARDS severity progression within 7 days in patients with moderate ARDS at Day-1. *Only patients alive at day-7 were included in this analysis. ICU intensive care unit

References

    1. REVA network . Accessed 5 Oct 2020
    1. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 doi: 10.1001/jama.2020.5394.
    1. Xie J, Wu W, Li S, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06211-2.
    1. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020 doi: 10.1016/S0140-6736(20)31189-2.
    1. Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy. Italy: JAMA Intern Med; 2020.
    1. RECOVERY Collaborative Group. Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med. 2020 doi: 10.1056/NEJMoa2021436.
    1. Clinical management of severe acute respiratory infection when COVID-19 is suspected. . Accessed 27 Apr 2020
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–2963. doi: 10.1001/jama.1993.03510240069035.
    1. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751.
    1. Juma S, Taabazuing M-M, Montero-Odasso M. Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay. Can Geriatr J. 2016;19:34–39. doi: 10.5770/cgj.19.196.
    1. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–1575. doi: 10.1007/s00134-016-4505-2.
    1. Sinha P, Calfee CS, Beitler JR, et al. Physiological analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2018 doi: 10.1164/rccm.201804-0692OC.
    1. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Vincent J-L, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–2329. doi: 10.1001/jama.2009.1754.
    1. Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515–526. doi: 10.1093/biomet/81.3.515.
    1. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi: 10.1136/bmj.b2393.
    1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 doi: 10.1001/jama.2020.1585.
    1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30079-5.
    1. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 doi: 10.1001/jama.2020.4326.
    1. Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–1102. doi: 10.1007/s00134-020-06033-2.
    1. Grasselli G, Tonetti T, Protti A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30370-2.
    1. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44:1914–1922. doi: 10.1007/s00134-018-5375-6.
    1. Gattinoni L, Meissner K, Marini JJ. The baby lung and the COVID-19 era. Intensive Care Med. 2020;46:1438–1440. doi: 10.1007/s00134-020-06103-5.
    1. Schmidt M, Hajage D, Lebreton G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30328-3.
    1. Millar JE, Busse R, Fraser JF, et al. Apples and oranges: international comparisons of COVID-19 observational studies in ICUs. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30368-4.
    1. Auld SC, Caridi-Scheible M, Robichaux C, et al. Declines in mortality over time for critically ill adults with coronavirus disease 2019. Crit Care Med. 2020 doi: 10.1097/CCM.0000000000004687.
    1. Alban A, Chick SE, Dongelmans DA, et al. ICU capacity management during the COVID-19 pandemic using a process simulation. Intensive Care Med. 2020;46:1624–1626. doi: 10.1007/s00134-020-06066-7.
    1. Gabarre P, Dumas G, Dupont T, et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020;46:1339–1348. doi: 10.1007/s00134-020-06153-9.
    1. . Accessed 5 Oct 2020
    1. Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017;14:S406–S409. doi: 10.1513/AnnalsATS.201706-447AW.
    1. Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:22. doi: 10.3389/fcvm.2020.00022.
    1. Gong MN, Bajwa EK, Thompson BT, Christiani DC. Body mass index is associated with the development of acute respiratory distress syndrome. Thorax. 2010;65:44–50. doi: 10.1136/thx.2009.117572.
    1. McLaren L. Socioeconomic status and obesity. Epidemiol Rev. 2007;29:29–48. doi: 10.1093/epirev/mxm001.
    1. Azoulay E, Fartoukh M, Darmon M, et al. Increased mortality in patients with severe SARS-CoV-2 infection admitted within seven days of disease onset. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06202-3.
    1. Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.047430.
    1. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06062-x.
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Liu Z, Long W, Tu M, et al. Lymphocyte subset (CD4 + , CD8 +) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect. 2020;81:318–356. doi: 10.1016/j.jinf.2020.03.054.
    1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.

Source: PubMed

3
購読する