HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial

Barbara Ensoli, Maphoshane Nchabeleng, Fabrizio Ensoli, Antonella Tripiciano, Stefania Bellino, Orietta Picconi, Cecilia Sgadari, Olimpia Longo, Lara Tavoschi, Daniel Joffe, Aurelio Cafaro, Vittorio Francavilla, Sonia Moretti, Maria Rosaria Pavone Cossut, Barbara Collacchi, Angela Arancio, Giovanni Paniccia, Anna Casabianca, Mauro Magnani, Stefano Buttò, Elise Levendal, John Velaphi Ndimande, Bennett Asia, Yogan Pillay, Enrico Garaci, Paolo Monini, SMU-MeCRU study group, Barbara Ensoli, Maphoshane Nchabeleng, Fabrizio Ensoli, Antonella Tripiciano, Stefania Bellino, Orietta Picconi, Cecilia Sgadari, Olimpia Longo, Lara Tavoschi, Daniel Joffe, Aurelio Cafaro, Vittorio Francavilla, Sonia Moretti, Maria Rosaria Pavone Cossut, Barbara Collacchi, Angela Arancio, Giovanni Paniccia, Anna Casabianca, Mauro Magnani, Stefano Buttò, Elise Levendal, John Velaphi Ndimande, Bennett Asia, Yogan Pillay, Enrico Garaci, Paolo Monini, SMU-MeCRU study group

Abstract

Background: Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa.

Methods: The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance.

Results: Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat vaccination increased CD4(+) T-cell numbers (all participants tested), particularly when baseline levels were still low after years of therapy, and this had a positive correlation with HIV neutralization. Finally, in cART non-compliant patients (24 participants), vaccination contained viral load rebound and maintained CD4(+) T-cell numbers over study entry levels as compared to placebo.

Conclusions: The data indicate that Tat vaccination can restore the immune system and induces cross-clade neutralizing anti-Tat antibodies in patients with different genetic backgrounds and infecting viruses, supporting the conduct of phase III studies in South Africa. Trial registration ClinicalTrials.gov NCT01513135, 01/23/2012.

Keywords: AIDS; CD4+ T cells; Clinical trials; Cross-clade antibodies; HIV; Neutralization; Tat; Therapy intensification; Vaccine; cART.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram. The number of participants screened, enrolled, randomized, followed-up and analyzed is shown for vaccine and placebo groups. Two hundred participants were randomised to one of the two treatment groups and analyzed for safety (safety population). One subject who received only one immunization was excluded from the immunogenicity population (total = 199). Thirteen volunteers were excluded from the “Per protocol” analysis: four received

Fig. 2

Anti-Tat humoral immune response elicited…

Fig. 2

Anti-Tat humoral immune response elicited in study participants. a Percentage of responders for…

Fig. 2
Anti-Tat humoral immune response elicited in study participants. a Percentage of responders for anti-Tat Abs (see “Methods” section) in vaccinees (n = 99) or placebos (n = 100). The absolute number of vaccines/placebos developing anti-Tat Ig subclasses are reported on the top of each histogram. Statistical significant differences were detected between vaccinees and placebos for each Ig and for total response (p < 0.0001, Chi square test). b Percentage of responders for anti-Tat Abs stratified according to the presence of one or more Ab isotype in vaccinees (n = 99) or placebos (n = 100). The absolute number of vaccines/placebos developing one or more Ab isotype are reported on the top of each histogram. Statistical significant differences were detected between vaccinees and placebos (p < 0.0001, Chi square test). c IgM, IgG and IgA Ab mean titers (with standard error) in responders (vaccinees: n = 79 for IgM, n = 95 for IgG and n = 75 for IgA; placebos: n = 9 for IgM, n = 12 for IgG and n = 6 for IgA). Significant differences were detected between vaccinees and placebos for anti-Tat IgG Abs from week 12 to week 48 (Student’s t test)

Fig. 3

Anti-Tat Ab durability in responders.…

Fig. 3

Anti-Tat Ab durability in responders. a Kaplan–Meier estimates showing the cumulative probability of…

Fig. 3
Anti-Tat Ab durability in responders. a Kaplan–Meier estimates showing the cumulative probability of anti-Tat Ab durability during follow-up in responders (see “Methods” section) (vaccinees: n = 96; placebos: n = 18). Anti-Tat Abs persisted significantly longer in vaccinees as compared to the placebo group (p = 0.0019, log-rank test). b Kaplan–Meier estimates showing the cumulative probability of anti-Tat Ab durability during follow-up in vaccinees (left panel) or placebo (right panel) responders, according to the number of anti-Tat Ab isotypes (vaccinees: one subclass n = 10, two or three subclasses n = 86; placebo: one subclass n = 10, two or three subclasses n = 8)

Fig. 4

Increase of cross-clades anti-Tat Abs…

Fig. 4

Increase of cross-clades anti-Tat Abs elicited in vaccinees. a Baseline OD values of…

Fig. 4
Increase of cross-clades anti-Tat Abs elicited in vaccinees. a Baseline OD values of anti-Tat IgM, IgG and IgA against clades C, D and A in vaccinees prior to immunization (n = 29, 76 % C clade, 41 % A clade, 14 % D clade). b Changes from baseline of IgM, IgG and IgA Ab responses (OD) against Tat from other clades (C, D, A) after vaccination. Testing was performed at the peak of Ab responses (between 12 and 24 weeks). Statistical analysis was performed using the Wilcoxon signed-rank test. p values assess the increase from baseline

Fig. 5

Neutralization of Tat/Env complex entry…

Fig. 5

Neutralization of Tat/Env complex entry in DC. Baseline values ( left panels )…

Fig. 5
Neutralization of Tat/Env complex entry in DC. Baseline values (left panels) and changes from baseline after immunization (right panels) of B-clade Env entry in DC in the absence (a) or presence (b) of B-clade Tat in anti-Tat Ab-positive (n = 13) vaccinees, and anti-Tat Ab-positive (n = 6) or anti-Tat Ab-negative (n = 5) placebos at week 20 and 48 from the first immunization. Reduction of Env entry in DC by sera indicates neutralization. Student’s t test was applied to evaluate the changes from baseline within and between treatment groups

Fig. 6

Neutralization of B- and C-clade…

Fig. 6

Neutralization of B- and C-clade Tat/Env complex entry in DC in vaccinees. Neutralization…

Fig. 6
Neutralization of B- and C-clade Tat/Env complex entry in DC in vaccinees. Neutralization of B- (n = 13) and C- (n = 10) clade Env entry in DC in the presence or absence of (B- or C-clade) Tat by sera of Ab-positive vaccinees, measured at week 20 or week 48 after immunization. Data are presented as mean values with standard errors. Student’s t test for paired data was used for the analyses

Fig. 7

Changes from baseline of CD4…

Fig. 7

Changes from baseline of CD4 + T-cell number in vaccinees and placebos. Baseline…

Fig. 7
Changes from baseline of CD4+ T-cell number in vaccinees and placebos. Baseline values (left panel) and changes from baseline (right panel) of CD4+ T-cell counts in vaccinees (n = 99) and placebos (n = 100). Data are presented as mean values with standard errors. Longitudinal analysis for repeated measures by the generalized estimating equations method was applied for the analysis. p values assess the changes from baseline within and between treatment groups

Fig. 8

CD4 + T-cell numbers up…

Fig. 8

CD4 + T-cell numbers up to week 48 in vaccinees and placebo stratified…

Fig. 8
CD4+ T-cell numbers up to week 48 in vaccinees and placebo stratified by quartiles according to baseline values. Baseline values (left panels) and changes from baseline (right panels) of CD4+ T cells in a vaccinees (n = 98), b placebo (n = 100) and c anti-Tat Ab-negative placebo (n = 80). Data are presented as mean values with standard errors. Longitudinal analysis for repeated measures was used. p values assess the changes from baseline within each treatment group

Fig. 9

Changes from baseline of CD4…

Fig. 9

Changes from baseline of CD4 + T-cell number in vaccinees and placebos non…

Fig. 9
Changes from baseline of CD4+ T-cell number in vaccinees and placebos non compliant to therapy. Baseline values (left panel) and changes from baseline after immunization (right panel) of CD4+ T-cell counts in vaccinees (n = 18) and placebos (n = 5). Data are presented as box plots. Wilcoxon signed rank sum test for paired data and Wilcoxon–Mann–Whitney test were used for the analyses. p values assess the changes from baseline within and between treatment groups

Fig. 10

Plasma viremia up to week…

Fig. 10

Plasma viremia up to week 48 in vaccinees and placebo non compliant to…

Fig. 10
Plasma viremia up to week 48 in vaccinees and placebo non compliant to therapy. Percentage of vaccinees and anti-Tat Ab-negative placebos non-compliant to cART with detectable plasma viremia (upper panel), and plasma viremia values (log10 copies/mL) in patients with detectable viral load at each study visit (lower panel)
All figures (10)
Fig. 2
Fig. 2
Anti-Tat humoral immune response elicited in study participants. a Percentage of responders for anti-Tat Abs (see “Methods” section) in vaccinees (n = 99) or placebos (n = 100). The absolute number of vaccines/placebos developing anti-Tat Ig subclasses are reported on the top of each histogram. Statistical significant differences were detected between vaccinees and placebos for each Ig and for total response (p < 0.0001, Chi square test). b Percentage of responders for anti-Tat Abs stratified according to the presence of one or more Ab isotype in vaccinees (n = 99) or placebos (n = 100). The absolute number of vaccines/placebos developing one or more Ab isotype are reported on the top of each histogram. Statistical significant differences were detected between vaccinees and placebos (p < 0.0001, Chi square test). c IgM, IgG and IgA Ab mean titers (with standard error) in responders (vaccinees: n = 79 for IgM, n = 95 for IgG and n = 75 for IgA; placebos: n = 9 for IgM, n = 12 for IgG and n = 6 for IgA). Significant differences were detected between vaccinees and placebos for anti-Tat IgG Abs from week 12 to week 48 (Student’s t test)
Fig. 3
Fig. 3
Anti-Tat Ab durability in responders. a Kaplan–Meier estimates showing the cumulative probability of anti-Tat Ab durability during follow-up in responders (see “Methods” section) (vaccinees: n = 96; placebos: n = 18). Anti-Tat Abs persisted significantly longer in vaccinees as compared to the placebo group (p = 0.0019, log-rank test). b Kaplan–Meier estimates showing the cumulative probability of anti-Tat Ab durability during follow-up in vaccinees (left panel) or placebo (right panel) responders, according to the number of anti-Tat Ab isotypes (vaccinees: one subclass n = 10, two or three subclasses n = 86; placebo: one subclass n = 10, two or three subclasses n = 8)
Fig. 4
Fig. 4
Increase of cross-clades anti-Tat Abs elicited in vaccinees. a Baseline OD values of anti-Tat IgM, IgG and IgA against clades C, D and A in vaccinees prior to immunization (n = 29, 76 % C clade, 41 % A clade, 14 % D clade). b Changes from baseline of IgM, IgG and IgA Ab responses (OD) against Tat from other clades (C, D, A) after vaccination. Testing was performed at the peak of Ab responses (between 12 and 24 weeks). Statistical analysis was performed using the Wilcoxon signed-rank test. p values assess the increase from baseline
Fig. 5
Fig. 5
Neutralization of Tat/Env complex entry in DC. Baseline values (left panels) and changes from baseline after immunization (right panels) of B-clade Env entry in DC in the absence (a) or presence (b) of B-clade Tat in anti-Tat Ab-positive (n = 13) vaccinees, and anti-Tat Ab-positive (n = 6) or anti-Tat Ab-negative (n = 5) placebos at week 20 and 48 from the first immunization. Reduction of Env entry in DC by sera indicates neutralization. Student’s t test was applied to evaluate the changes from baseline within and between treatment groups
Fig. 6
Fig. 6
Neutralization of B- and C-clade Tat/Env complex entry in DC in vaccinees. Neutralization of B- (n = 13) and C- (n = 10) clade Env entry in DC in the presence or absence of (B- or C-clade) Tat by sera of Ab-positive vaccinees, measured at week 20 or week 48 after immunization. Data are presented as mean values with standard errors. Student’s t test for paired data was used for the analyses
Fig. 7
Fig. 7
Changes from baseline of CD4+ T-cell number in vaccinees and placebos. Baseline values (left panel) and changes from baseline (right panel) of CD4+ T-cell counts in vaccinees (n = 99) and placebos (n = 100). Data are presented as mean values with standard errors. Longitudinal analysis for repeated measures by the generalized estimating equations method was applied for the analysis. p values assess the changes from baseline within and between treatment groups
Fig. 8
Fig. 8
CD4+ T-cell numbers up to week 48 in vaccinees and placebo stratified by quartiles according to baseline values. Baseline values (left panels) and changes from baseline (right panels) of CD4+ T cells in a vaccinees (n = 98), b placebo (n = 100) and c anti-Tat Ab-negative placebo (n = 80). Data are presented as mean values with standard errors. Longitudinal analysis for repeated measures was used. p values assess the changes from baseline within each treatment group
Fig. 9
Fig. 9
Changes from baseline of CD4+ T-cell number in vaccinees and placebos non compliant to therapy. Baseline values (left panel) and changes from baseline after immunization (right panel) of CD4+ T-cell counts in vaccinees (n = 18) and placebos (n = 5). Data are presented as box plots. Wilcoxon signed rank sum test for paired data and Wilcoxon–Mann–Whitney test were used for the analyses. p values assess the changes from baseline within and between treatment groups
Fig. 10
Fig. 10
Plasma viremia up to week 48 in vaccinees and placebo non compliant to therapy. Percentage of vaccinees and anti-Tat Ab-negative placebos non-compliant to cART with detectable plasma viremia (upper panel), and plasma viremia values (log10 copies/mL) in patients with detectable viral load at each study visit (lower panel)

References

    1. The Gap report UNAIDS 2014. UNAIDS web site. July 2014, updated September 2014. . (Accessed 7 Apr 2016).
    1. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. WHO web site. 2015. . (Accessed 7 Apr 2016).
    1. Gupta RK, Jordan MR, Sultan BJ, Hill A, Davis DH, Gregson J, Sawyer AW, Hamers RL, Ndembi N, Pillay D, Bertagnolio S. Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet. 2012;380:1250–1258. doi: 10.1016/S0140-6736(12)61038-1.
    1. Hocqueloux L, Avettand-Fènoël V, Jacquot S, Prazuck T, Legac E, Mélard A, Niang M, Mille C, Le Moal G, Viard JP, Rouzioux C, AC32 (Coordinated Action on HIV Reservoirs) of the Agence Nationale de Recherches sur le Sida et les Hépatites Virales (ANRS) Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J Antimicrob Chemother. 2013;68:1169–1178. doi: 10.1093/jac/dks533.
    1. Grinsztejn B, Hosseinipour MC, Ribaudo HJ, Swindells S, Eron J, Chen YQ, Wang L, Ou SS, Anderson M, McCauley M, Gamble T, Kumarasamy N, Hakim JG, Kumwenda J, Pilotto JH, Godbole SV, Chariyalertsak S, de Melo MG, Mayer KH, Eshleman SH, Piwowar-Manning E, Makhema J, Mills LA, Panchia R, Sanne I, Gallant J, Hoffman I, Taha TE, Nielsen-Saines K, Celentano D, Essex M, Havlir D, Cohen MS, HPTN 052-ACTG Study Team Effects of early versus delayed initiation of antiretroviral treatment on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled trial. Lancet Infect Dis. 2014;14:281–290. doi: 10.1016/S1473-3099(13)70692-3.
    1. Gazzola L, Tincati C, Bellistrì GM, Monforte AD, Marchetti G. The absence of CD4+ T cell count recovery despite receipt of virologically suppressive highly active antiretroviral therapy: clinical risk, immunological gaps, and therapeutic options. Clin Infect Dis. 2009;48:328–337. doi: 10.1086/595851.
    1. Cenderello G, De Maria A. Discordant responses to cART in HIV-1 patients in the era of high potency antiretroviral drugs: clinical evaluation, classification, management prospects. Expert Rev Anti Infect Ther. 2016;14:29–40. doi: 10.1586/14787210.2016.1106937.
    1. Massanella M, Negredo E, Clotet B, Blanco J. Immunodiscordant responses to HAART—mechanisms and consequences. Expert Rev Clin Immunol. 2013;9:1135–1149. doi: 10.1586/1744666X.2013.842897.
    1. Ensoli B, Cafaro A, Monini P, Marcotullio S, Ensoli F. Challenges in HIV vaccine research for treatment and prevention. Front Immunol. 2014;5:417. doi: 10.3389/fimmu.2014.00417.
    1. Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem. 1999;274:28837–28840. doi: 10.1074/jbc.274.41.28837.
    1. Li JC, Yim HC, Lau AS. Role of HIV-1 Tat in AIDS pathogenesis: its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS. 2010;24:1609–1623. doi: 10.1097/QAD.0b013e32833ac6a0.
    1. Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F. The trans-activator gene of HTLV-III is essential for virus replication. Nature. 1986;320:367–371. doi: 10.1038/320367a0.
    1. Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell. 1986;44:941–947. doi: 10.1016/0092-8674(86)90017-6.
    1. Hauber J, Perkins A, Heimer EP, Cullen BR. Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci USA. 1987;84:6364–6368. doi: 10.1073/pnas.84.18.6364.
    1. Berkhout B, Silverman RH, Jeang KT. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell. 1989;59:273–282. doi: 10.1016/0092-8674(89)90289-4.
    1. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005;122:169–182. doi: 10.1016/j.cell.2005.06.006.
    1. Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science. 2001;293:1503–1506. doi: 10.1126/science.1061548.
    1. Mediouni S, Darque A, Baillat G, Ravaux I, Dhiver C, Tissot-Dupont H, Mokhtari M, Moreau H, Tamalet C, Brunet C, Paul P, Dignat-George F, Stein A, Brouqui P, Spector SA, Campbell GR, Loret EP. Antiretroviral therapy does not block the secretion of the human immunodeficiency virus Tat protein. Infect Disord Drug Targets. 2012;12:81–86. doi: 10.2174/187152612798994939.
    1. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol. 1993;67:277–287.
    1. Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS. 1997;11:1421–1431. doi: 10.1097/00002030-199712000-00006.
    1. Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugnière M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J. 2010;29:1348–1362. doi: 10.1038/emboj.2010.32.
    1. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature. 1990;345:84–86. doi: 10.1038/345084a0.
    1. Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombini S, Raffeld M, Cafaro A, Chang HK, Brady JN, Gallo RC. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature. 1994;371:674–680. doi: 10.1038/371674a0.
    1. Li CJ, Ueda Y, Shi B, Borodyansky L, Huang L, Li YZ, Pardee AB. Tat protein induces self-perpetuating permissivity for productive HIV-1 infection. Proc Natl Acad Sci USA. 1997;94:8116–8120. doi: 10.1073/pnas.94.15.8116.
    1. Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol. 1998;72:8952–8960.
    1. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM. HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA. 1998;95:13153–13158. doi: 10.1073/pnas.95.22.13153.
    1. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, Nath A. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA. 2013;110:13588–13593. doi: 10.1073/pnas.1308673110.
    1. Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, McCloskey T, Pahwa S, Verdin E. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science. 1997;275:1481–1485. doi: 10.1126/science.275.5305.1481.
    1. Viscidi RP, Mayur K, Lederman HM, Frankel AD. Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science. 1989;246:1606–1608. doi: 10.1126/science.2556795.
    1. Westendorp MO, Li-Weber M, Frank RW, Krammer PH. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol. 1994;68:4177–4185.
    1. Zauli G, Gibellini D, Celeghini C, Mischiati C, Bassini A, La Placa M, Capitani S. Pleiotropic effects of immobilized versus soluble recombinant HIV-1 Tat protein on CD3-mediated activation, induction of apoptosis, and HIV-1 long terminal repeat transactivation in purified CD4+ T lymphocytes. J Immunol. 1996;157:2216–2224.
    1. Buonaguro L, Barillari G, Chang HK, Bohan CA, Kao V, Morgan R, Gallo RC, Ensoli B. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol. 1992;66:7159–7167.
    1. Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassarre F, Dragonetti E, Quinto I, Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med. 1994;179:961–971. doi: 10.1084/jem.179.3.961.
    1. Matsui M, Warburton RJ, Cogswell PC, Baldwin AS, Jr, Frelinger JA. Effects of HIV-1 Tat on expression of HLA class I molecules. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;11:233–240. doi: 10.1097/00042560-199603010-00003.
    1. Fanales-Belasio E, Moretti S, Nappi F, Barillari G, Micheletti F, Cafaro A, Ensoli B. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J Immunol. 2002;168:197–206. doi: 10.4049/jimmunol.168.1.197.
    1. Fanales-Belasio E, Moretti S, Fiorelli V, Tripiciano A, Pavone Cossut MR, Scoglio A, Collacchi B, Nappi F, Macchia I, Bellino S, Francavilla V, Caputo A, Barillari G, Magnani M, Laguardia ME, Cafaro A, Titti F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol. 2009;182:2888–2897. doi: 10.4049/jimmunol.0711406.
    1. Planès R, BenMohamed L, Leghmari K, Delobel P, Izopet J, Bahraoui E. HIV-1 Tat protein induces PD-L1 (B7-H1) expression on dendritic cells through tumor necrosis factor alpha- and toll-like receptor 4-mediated mechanisms. J Virol. 2014;88:6672–6689. doi: 10.1128/JVI.00825-14.
    1. Planès R, Bahraoui E. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on t cells proliferation. PLoS One. 2013;8(9):e74551. doi: 10.1371/journal.pone.0074551.
    1. Li JC, Lee DC, Cheung BK, Lau AS. Mechanisms for HIV Tat upregulation of IL-10 and other cytokine expression: kinase signaling and PKR-mediated immune response. FEBS Lett. 2005;579:3055–3062. doi: 10.1016/j.febslet.2005.04.060.
    1. Poggi A, Zocchi MR. HIV-1 Tat triggers TGF-beta production and NK cell apoptosis that is prevented by pertussis toxin B. Clin Dev Immunol. 2006;13:369–372. doi: 10.1080/17402520600645712.
    1. Gupta S, Boppana R, Mishra GC, Saha B, Mitra D. HIV-1 Tat suppresses gp120-specific T cell response in IL-10-dependent manner. J Immunol. 2008;180:79–88. doi: 10.4049/jimmunol.180.1.79.
    1. Cheng SM, Li JC, Lin SS, Lee DC, Liu L, Chen Z, Lau AS. HIV-1 transactivator protein induction of suppressor of cytokine signaling-2 contributes to dysregulation of IFN{gamma} signaling. Blood. 2009;113:5192–5201. doi: 10.1182/blood-2008-10-183525.
    1. Faller EM, Sugden SM, McVey MJ, Kakal JA, MacPherson PA. Soluble HIV Tat protein removes the IL-7 receptor alpha-chain from the surface of resting CD8 T cells and targets it for degradation. J Immunol. 2010;185:2854–2866. doi: 10.4049/jimmunol.0902207.
    1. Gavioli R, Gallerani E, Fortini C, Fabris M, Bottoni A, Canella A, Bonaccorsi A, Marastoni M, Micheletti F, Cafaro A, Rimessi P, Caputo A, Ensoli B. HIV-1 Tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity. J Immunol. 2004;173:3838–3843. doi: 10.4049/jimmunol.173.6.3838.
    1. Sforza F, Nicoli F, Gallerani E, Finessi V, Reali E, Cafaro A, Caputo A, Ensoli B, Gavioli R. HIV-1 Tat affects the programming and functionality of human CD8+ T cells by modulating the expression of T-box transcription factors. AIDS. 2014;28:1729–1738. doi: 10.1097/QAD.0000000000000315.
    1. Nicoli F, Finessi V, Sicurella M, Rizzotto L, Gallerani E, Destro F, Cafaro A, Marconi P, Caputo A, Ensoli B, Gavioli R. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS One. 2013;8:e77746. doi: 10.1371/journal.pone.0077746.
    1. Chiozzini C, Collacchi B, Nappi F, Bauer T, Arenaccio C, Tripiciano A, Longo O, Ensoli F, Cafaro A, Ensoli B, Federico M. Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. AIDS. 2014;28:2189–2200. doi: 10.1097/QAD.0000000000000389.
    1. Debaisieux S, Lachambre S, Gross A, Mettling C, Besteiro S, Yezid H, Henaff D, Chopard C, Mesnard JM, Beaumelle B. HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup. Nat Commun. 2015;6:6211. doi: 10.1038/ncomms7211.
    1. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science. 1995;268:429–431. doi: 10.1126/science.7716549.
    1. Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D, Barbier P, de Mareuil J, Braguer D, Kaleebu P, Yirrell DL, Loret EP. The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem. 2004;279:48197–48204. doi: 10.1074/jbc.M406195200.
    1. Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA. The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem. 2005;280:38376–38382. doi: 10.1074/jbc.M506630200.
    1. Kim N, Kukkonen S, Gupta S, Aldovini A. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLoS Pathog. 2010;6:e1001103. doi: 10.1371/journal.ppat.1001103.
    1. Ensoli B, Bellino S, Tripiciano A, Longo O, Francavilla V, Marcotullio S, Cafaro A, Picconi O, Paniccia G, Scoglio A, Arancio A, Ariola C, Ruiz Alvarez MJ, Campagna M, Scaramuzzi D, Iori C, Esposito R, Mussini C, Ghinelli F, Sighinolfi L, Palamara G, Latini A, Angarano G, Ladisa N, Soscia F, Mercurio VS, Lazzarin A, Tambussi G, Visintini R, Mazzotta F, Di Pietro M, Galli M, Rusconi S, Carosi G, Torti C, Di Perri G, Bonora S, Ensoli F, Garaci E. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One. 2010;5:e13540. doi: 10.1371/journal.pone.0013540.
    1. Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, Narciso P, Di Carlo A, Monini P, Magnani M, Garaci E. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS. 2008;22:2207–2209. doi: 10.1097/QAD.0b013e32831392d4.
    1. Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, Narciso P, Di Carlo A, Tripiciano A, Longo O, Bellino S, Francavilla V, Paniccia G, Arancio A, Scoglio A, Collacchi B, Ruiz Alvarez MJ, Tambussi G, Tassan Din C, Palamara G, Latini A, Antinori A, D’Offizi G, Giulianelli M, Giulianelli M, Carta M, Monini P, Magnani M, Garaci E. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine. 2009;28:371–378. doi: 10.1016/j.vaccine.2009.10.038.
    1. Longo O, Tripiciano A, Fiorelli V, Bellino S, Scoglio A, Collacchi B, Ruiz Alvarez MJ, Francavilla V, Arancio A, Paniccia G, Lazzarin A, Tambussi G, Tassan Din C, Visintini R, Narciso P, Antinori A, D’Offizi G, Giulianelli M, Carta M, Di Carlo A, Palamara G, Giuliani M, Laguardia ME, Monini P, Magnani M, Ensoli F, Ensoli B. Phase I therapeutic trial of the HIV-1 Tat protein and long term follow-up. Vaccine. 2009;27:3306–3312. doi: 10.1016/j.vaccine.2009.01.090.
    1. Ensoli F, Cafaro A, Casabianca A, Tripiciano A, Bellino S, Longo O, Francavilla V, Picconi O, Sgadari C, Moretti S, Pavone Cossut MR, Arancio A, Orlandi C, Sernicola L, Maggiorella MT, Paniccia G, Mussini C, Lazzarin A, Sighinolfi L, Palamara G, Gori A, Angarano G, Di Pietro M, Galli M, Mercurio VS, Castelli F, Di Perri G, Monini P, Magnani M, Garaci E, Ensoli B. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology. 2015;12:33. doi: 10.1186/s12977-015-0151-y.
    1. Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, Longo O, Francavilla V, Buttò S, Titti F, Monini P, Ensoli F, Ensoli B. Development of a novel AIDS vaccine: the HIV-1 Tat protein vaccine. Expert Opin Biol Ther. 2015;15(Suppl. 1):S13–S29. doi: 10.1517/14712598.2015.1021328.
    1. Marchetti G, Gori A, Casabianca A, Magnani M, Franzetti F, Clerici M, Perno CF, Monforte AD, Galli M, Meroni L. Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART. AIDS. 2006;20:1727–1736. doi: 10.1097/01.aids.0000242819.72839.db.
    1. Migueles SA, Weeks KA, Nou E, Berkley AM, Rood JE, Osborne CM, Hallahan CW, Cogliano-Shutta NA, Metcalf JA, McLaughlin M, Kwan R, Mican JM, Davey RT, Jr, Connors M. Defective human immunodeficiency virus-specific CD8+ T-cell polyfunctionality, proliferation, and cytotoxicity are not restored by antiretroviral therapy. J Virol. 2009;83:11876–11889. doi: 10.1128/JVI.01153-09.
    1. Guihot A, Bourgarit A, Carcelain G, Autran B. Immune reconstitution after a decade of combined antiretroviral therapies for human immunodeficiency virus. Trends Immunol. 2011;32:131–137. doi: 10.1016/j.it.2010.12.002.
    1. Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol. 2012;5:596–604. doi: 10.1038/mi.2012.82.
    1. Tincati C, Merlini E, Braidotti P, Ancona G, Savi F, Tosi D, Borghi E, Callegari ML, Mangiavillano B, Barassi A, Bulfamante G, Monforte AD, Romagnoli S, Chomont N, Marchetti G. Impaired gut junctional complexes feature late-treated individuals with suboptimal CD4+ T-cell recovery upon virologically suppressive combination antiretroviral therapy. AIDS 2016;30(7):991–1003.
    1. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, Jr, Sowder RC, 2nd, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80:9039–9052. doi: 10.1128/JVI.01013-06.
    1. Monini P, Cafaro A, Srivastava IK, Moretti S, Sharma VA, Andreini C, Chiozzini C, Ferrantelli F, Cossut MR, Tripiciano A, Nappi F, Longo O, Bellino S, Picconi O, Fanales-Belasio E, Borsetti A, Toschi E, Schiavoni I, Bacigalupo I, Kan E, Sernicola L, Maggiorella MT, Montin K, Porcu M, Leone P, Leone P, Collacchi B, Palladino C, Ridolfi B, Falchi M, Macchia I, Ulmer JB, Buttò S, Sgadari C, Magnani M, Federico MP, Titti F, Banci L, Dallocchio F, Rappuoli R, Ensoli F, Barnett SW, Garaci E, Ensoli B. HIV-1 Tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies. PLoS One. 2012;7:e48781. doi: 10.1371/journal.pone.0048781.
    1. Reiss P, de Wolf F, Kuiken CL, de Ronde A, Dekker J, Boucher CA, Debouck C, Lange JM, Goudsmit J. Contribution of antibody response to recombinant HIV-1 gene-encoded products nef, rev, tat, and protease in predicting development of AIDS in HIV-1-infected individuals. J Acquir Immune Defic Syndr. 1991;4:165–172.
    1. Re MC, Furlini G, Vignoli M, Ramazzotti E, Roderigo G, De Rosa V, Zauli G, Lolli S, Capitani S, La Placa M. Effect of antibody to HIV-1 Tat protein on viral replication in vitro and progression of HIV-1 disease in vivo. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10:408–416. doi: 10.1097/00042560-199512000-00003.
    1. Richardson MW, Mirchandani J, Duong J, Grimaldo S, Kocieda V, Hendel H, Khalili K, Zagury JF, Rappaport J. Antibodies to Tat and Vpr in the GRIV cohort: differential association with maintenance of long-term non-progression status in HIV-1 infection. Biomed Pharmacother. 2003;57:4–14. doi: 10.1016/S0753-3322(02)00327-X.
    1. Rezza G, Fiorelli V, Dorrucci M, Ciccozzi M, Tripiciano A, Scoglio A, Collacchi B, Ruiz-Alvarez M, Giannetto C, Caputo A, Tomasoni L, Castelli F, Sciandra M, Sinicco A, Ensoli F, Buttò S, Ensoli B. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis. 2005;191:1321–1324. doi: 10.1086/428909.
    1. Bellino S, Tripiciano A, Picconi O, Francavilla V, Longo O, Sgadari C, Paniccia G, Arancio A, Angarano A, Ladisa N, Lazzarin A, Tambussi G, Nozza S, Torti C, Focà E, Palamara G, Latini A, Sighinolfi L, Mazzotta M, Di Pietro M, Di Perri G, Bonora S, Mercurio VS, Mussini C, Gori A, Galli M, Monini P, Cafaro A, Ensoli F, Ensoli B. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study. Retrovirology. 2014;11:49. doi: 10.1186/1742-4690-11-49.
    1. Sáez-Cirión A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, Boufassa F, Barré-Sinoussi F, Delfraissy JF, Sinet M, Pancino G, Venet A, Agence Nationale de Recherches sur le Sida EP36 HIV Controllers Study Group HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci USA. 2007;104:6776–6781. doi: 10.1073/pnas.0611244104.
    1. Hua S, Lécuroux C, Sáez-Cirión A, Pancino G, Girault I, Versmisse P, Boufassa F, Taulera O, Sinet M, Lambotte O, Venet A. Potential role for HIV-specific CD38−/HLA-DR+CD8+ T Cells in viral suppression and cytotoxicity in HIV controllers. PLoS One. 2014;9:e101920. doi: 10.1371/journal.pone.0101920.
    1. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189:113–130. doi: 10.1016/0022-2836(86)90385-2.
    1. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-C.
    1. Rosenberg AH, Lade BN, Chui DS, Lin SW, Dunn JJ, Studier FW. Vectors for selective expression of cloned DNAs by T7 RNA polimerase. Gene. 1987;56:125–135. doi: 10.1016/0378-1119(87)90165-X.
    1. Buttò S, Fiorelli V, Tripiciano A, Ruiz-Alvarez MJ, Scoglio A, Ensoli F, Ciccozzi M, Collacchi B, Sabbatucci M, Cafaro A, Guzmán CA, Borsetti A, Caputo A, Vardas E, Colvin M, Lukwiya M, Rezza G, Ensoli B, Tat Multicentric Study Group Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans. J Infects Dis. 2003;188:1171–1180. doi: 10.1086/378412.
    1. Medina-Ramírez M, Sánchez-Merino V, Sánchez-Palomino S, Merino-Mansilla A, Ferreira CB, Pérez I, González N, Alvarez A, Alcocer-González JM, García F, Gatell JM, Alcamí J, Yuste E. Broadly cross-neutralizing antibodies in HIV-1 patients with undetectable viremia. J Virol. 2011;85:5804–5813. doi: 10.1128/JVI.02482-10.
    1. Demberg T, Florese RH, Heath MJ, Larsen K, Kalisz I, Kalyanaraman VS, Lee EM, Pal R, Venzon D, Grant R, Patterson LJ, Korioth-Schmitz B, Buzby A, Dombagoda D, Montefiori DC, Letvin NL, Cafaro A, Ensoli B, Robert-Guroff M. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol. 2007;81:3414–3427. doi: 10.1128/JVI.02453-06.
    1. García F, León A, Gatell JM, Plana M, Gallart T. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother. 2012;8:569–581. doi: 10.4161/hv.19555.
    1. Turner JL, Kostman JR, Aquino A, Wright D, Szabo S, Bidwell R, Goodgame J, Daigle A, Kelley E, Jensen F, Duffy C, Carlo D, Moss RB. The effects of an HIV-1 immunogen (Remune) on viral load, CD4 cell counts and HIV-specific immunity in a double-blind, randomized, adjuvant-controlled subset study in HIV infected subjects regardless of concomitant antiviral drugs. HIV Med. 2001;2:68–77. doi: 10.1046/j.1468-1293.2001.00051.x.
    1. Chantratita W, Sukeepaisarncharoen W, Chandeying V, Kulpradist S, Israngkura Na Ayudhtaya B, Rugpao S, Sirawaraporn W, Boonshuyar C, Churdboonchart V. Delayed progression to AIDS in volunteers treated with long-term HIV-1 Immunogen (REMUNE®) therapy in Thailand. HIV Med. 2004;5:317–325. doi: 10.1111/j.1468-1293.2004.00230.x.
    1. Hardy G, Imami N, Nelson MR, Sullivan AK, Moss R, Aasa-Chapman MM, Gazzard B, Gotch FM. A phase I, randomized study of combined IL-2 and therapeutic immunisation with antiretroviral therapy. J Immune Based Ther Vaccines. 2007;5:6. doi: 10.1186/1476-8518-5-6.
    1. Herasimtschuk A, Downey J, Nelson M, Moyle G, Mandalia S, Sikut R, Adojaan M, Stanescu I, Gotch F, Imami N. Therapeutic immunisation plus cytokine and hormone therapy improves CD4 T-cell counts, restores anti-HIV-1 responses and reduces immune activation in treated chronic HIV-1 infection. Vaccine. 2014;32:7005–7013. doi: 10.1016/j.vaccine.2014.09.072.
    1. Lori F. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines. 2011;10:1371–1384. doi: 10.1586/erv.11.118.
    1. Vardas E, Stanescu I, Leinonen M, Ellefsen K, Pantaleo G, Valtavaara M, Ustav M, Reijonen K. Indicators of therapeutic effect in FIT-06, a Phase II trial of a DNA vaccine, GTU®-multi-HIVB, in untreated HIV-1 infected subjects. Vaccine. 2012;30:4046–4054. doi: 10.1016/j.vaccine.2012.04.007.
    1. Lind A, Sommerfelt M, Holmberg JO, Baksaas I, Sørensen B, Kvale D. Intradermal vaccination of HIV-infected patients with short HIV Gag p24-like peptides induces CD4+ and CD8+ T cell responses lasting more than seven years. Scand J Infect Dis. 2012;44:566–572. doi: 10.3109/00365548.2011.653581.
    1. Goldstein G, Damiano E, Donikyan M, Pasha M, Beckwith E, Chicca J. HIV-1 Tat B-cell epitope vaccination was ineffectual in preventing viral rebound after ART cessation: HIV rebound with current ART appears to be due to infection with new endogenous founder virus and not to resurgence of pre-existing Tat-dependent viremia. Hum Vaccin Immunother. 2012;8:1425–1430. doi: 10.4161/hv.21616.
    1. García F, Climent N, Guardo AC, Gil C, León A, Autran B, Lifson JD, Martínez-Picado J, Dalmau J, Clotet B, Gatell JM, Plana M, Gallart T. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med. 2013;5:166ra2.
    1. Achenbach CJ, Assoumou L, Deeks SG, Wilkin TJ, Berzins B, Casazza JP, Lambert-Niclot S, Koup RA, Costagliola D, Calvez V, Katlama C, Autran B, Murphy RL. Effect of therapeutic intensification followed by HIV DNA prime and rAd5 boost vaccination on HIV-specific immunity and HIV reservoir (EraMune 02): a multicentre randomised clinical trial. Lancet HIV. 2015;2:e82–e91. doi: 10.1016/S2352-3018(15)00026-0.
    1. Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA. 1993;90:7941–7945. doi: 10.1073/pnas.90.17.7941.
    1. Barillari G, Ensoli B. Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi’s sarcoma. Clin Microbiol Rev. 2002;15:310–326. doi: 10.1128/CMR.15.2.310-326.2002.
    1. Toschi E, Bacigalupo I, Strippoli R, Chiozzini C, Cereseto A, Falchi M, Nappi F, Sgadari C, Barillari G, Mainiero F, Ensoli B. HIV-1 Tat regulates endothelial cell cycle progression via activation of the Ras/ERK MAPK signaling pathway. Mol Biol Cell. 2006;17:1985–1994. doi: 10.1091/mbc.E05-08-0717.
    1. Stupack DG, Cheresh DA. Integrins and angiogenesis. Curr Top Dev Biol. 2004;64:207–238. doi: 10.1016/S0070-2153(04)64009-9.
    1. Ruoshlati E. Integrin signaling and matrix assembly. Tumour Biol. 1996;17:117–124. doi: 10.1159/000217975.
    1. Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, Deeks SG. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis. 2003;187:1534–1543. doi: 10.1086/374786.
    1. French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis. 2009;200:1212–1215. doi: 10.1086/605890.
    1. Neuhaus J, Jacobs DR, Jr, Baker JV, Calmy A, Duprez D, La Rosa A, Kuller LH, Pett SL, Ristola M, Ross MJ, Shlipak MG, Tracy R, Neaton JD. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201:1788–1795. doi: 10.1086/652749.
    1. Burdo TH, Lo J, Abbara S, Wei J, DeLelys ME, Preffer F, Rosenberg ES, Williams KC, Grinspoon S. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204:154–163. doi: 10.1093/infdis/jir214.
    1. Lederman MM, Calabrese L, Funderburg NT, Clagett B, Medvik K, Bonilla H, Gripshover B, Salata RA, Taege A, Lisgaris M, McComsey GA, Kirchner E, Baum J, Shive C, Asaad R, Kalayjian RC, Sieg SF, Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J Infect Dis. 2011;204:1217–1226. doi: 10.1093/infdis/jir507.
    1. Wood E, Hogg RS, Yip B, Harrigan PR, O’Shaughnessy MV, Montaner JS. Effect of medication adherence on survival of HIV-infected adults who start highly active antiretroviral therapy when the CD4+ cell count is 0.200–0.350 × 109 cells/L. Ann Intern Med. 2003;139:810–816. doi: 10.7326/0003-4819-139-10-200311180-00008.
    1. Wood E, Hogg RS, Yip B, Harrigan PR, O’Shaughnessy MV, Montaner JS. The impact of adherence on CD4 cell count responses among HIV-infected patients. J Acquir Immune Defic Syndr. 2004;35:261–268. doi: 10.1097/00126334-200403010-00006.
    1. Lucas GM. Antiretroviral adherence, drug resistance, viral fitness and HIV disease progression: a tangled web is woven. J Antimicrob Chemother. 2005;55:413–416. doi: 10.1093/jac/dki042.
    1. Pasternak AO, de Bruin M, Bakker M, Berkhout B, Prins JM. High current CD4+ T cell count predicts suboptimal adherence to antiretroviral therapy. PLoS One. 2015;10:e0140791. doi: 10.1371/journal.pone.0140791.
    1. Marin B, Thiébaut R, Bucher HC, Rondeau V, Costagliola D, Dorrucci M, Hamouda O, Prins M, Walker S, Porter K, Sabin C, Chêne G. Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS. 2009;23:1743–1753. doi: 10.1097/QAD.0b013e32832e9b78.
    1. Phillips AN, Neaton J, Lundgren JD. The role of HIV in serious diseases other than AIDS. AIDS. 2008;22:2409–2418. doi: 10.1097/QAD.0b013e3283174636.
    1. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, Prins M, Reiss P, AGEhIV Cohort Study Group Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-Infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis. 2014;59:1787–1797. doi: 10.1093/cid/ciu701.
    1. Mirani G, Williams PL, Chernoff M, Abzug MJ, Levin MJ, Seage GR, 3rd, Oleske JM, Purswani MU, Hazra R, Traite S, Zimmer B, Van Dyke RB, IMPAACT P1074 Study Team Changing trends in complications and mortality rates among US youth and young adults with HIV infection in the era of combination antiretroviral therapy. Clin Infect Dis. 2015;61:1850–1861. doi: 10.1093/cid/civ687.
    1. Barth RE, van der Loeff MF, Schuurman R, Hoepelman AI, Wensing AM. Virological follow-up of adult patients in antiretroviral treatment programmes in sub-Saharan Africa: a systematic review. Lancet Infect Dis. 2010;10:155–166. doi: 10.1016/S1473-3099(09)70328-7.
    1. Rosen S, Fox MP. Retention in HIV care between testing and treatment in sub-Saharan Africa: a systematic review. PLoS Med. 2011;8:e1001056. doi: 10.1371/journal.pmed.1001056.
    1. Kozal MJ, Hullsiek KH, Macarthur RD, Berg-Wolf MV, Peng G, Xiang Y, Baxter JD, Uy J, Telzak EE, Novak RM, Terry Beirn Community Programs for Clinical Research on AIDS (CPCRA) The incidence of HIV drug resistance and its impact on progression of HIV disease among antiretroviral-naïve participants started on three different antiretroviral therapy strategies. HIV Clin Trials. 2007;8:357–370. doi: 10.1310/hct0806-357.
    1. Ketseoglou I, Lukhwareni A, Steegen K, Carmona S, Stevens WS, Papathanasopoulos MA. Viral tropism and antiretroviral drug resistance in HIV-1 subtype C-infected patients failing highly active antiretroviral therapy in Johannesburg, South Africa. AIDS Res Hum Retrovir. 2014;30:289–293. doi: 10.1089/aid.2013.0267.
    1. Besson GJ, Lalama CM, Bosch RJ, Gandhi RT, Bedison MA, Aga E, Riddler SA, McMahon DK, Hong F, Mellors JW. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin Infect Dis. 2014;59:1312–1321. doi: 10.1093/cid/ciu585.
    1. Buzón MJ, Martin-Gayo E, Pereyra F, Ouyang Z, Sun H, Li JZ, Piovoso M, Shaw A, Dalmau J, Zangger N, Martinez-Picado J, Zurakowski R, Yu XG, Telenti A, Walker BD, Rosenberg ES, Lichterfeld M. Long-term antiretroviral treatment initiated in primary HIV-1 infection affects the size, composition and decay kinetics of the reservoir of HIV-1 infected CD4 T cells. J Virol. 2014;88:10056–10065. doi: 10.1128/JVI.01046-14.

Source: PubMed

3
購読する