Olfactory Stimulation and the Diagnosis of Patients With Disorders of Consciousness: A Double-Blind, Randomized Clinical Trial

Jing Wang, Shaoming Zhang, Wenbin Liu, Yao Zhang, Zhouyao Hu, Ziwei Sun, Haibo Di, Jing Wang, Shaoming Zhang, Wenbin Liu, Yao Zhang, Zhouyao Hu, Ziwei Sun, Haibo Di

Abstract

Objectives: The aim of this study was to determine whether behavioral responses elicited by olfactory stimulation are a predictor of conscious behavioral response and prognosis of patients with disorders of consciousness (DOC).

Methods: Twenty-three DOC patients (8 unresponsive wakefulness syndrome [UWS]; 15 minimally conscious state [MCS]) were recruited for this study in which 1-Octen-3-ol (familiar neutral odor) and pyridine were used to test odor behavioral responses, and water was used as an odorless stimulus. One rater presented the three odors in front of each patient's nose randomly, and another one videotaped all behavioral responses (e.g., pouting, wrinkling nose, slightly shaking head, frowning, etc.). Two independent raters, blind to the stimuli and the patient's diagnosis, gave the behavioral results according to the recorded videos. One-, 3-, and 6-month follow-up evaluations were conducted to obtain a good prognostic value.

Results: All MCS patients showed behavioral responses to the 1-Octen-3-ol stimulus; nine MCS and one UWS showed olfactory emotional responses to the pyridine, and two MCS showed olfactory emotional responses to the water stimulus. The incidence of behavioral response was significantly higher using 1-Octen-3-ol than it was for water by McNemar test (p < 0.001), significantly higher using pyridine than it was for water (p < 0.01). The χ2 test results indicated that there were significant differences between MCS and UWS to 1-Octen-3-ol (p < 0.001). For MCS patients, the incidence of behavioral response was no different between using 1-Octen-3-ol and pyridine (p > 0.05). There was no significant relationship between the olfactory behavioral response and the improvement of consciousness based on the χ2 test analysis (p > 0.05).

Conclusion: Olfactory stimuli, especially for the familiar neutral odor, might be effective for eliciting a conscious behavioral response and estimating the clinical diagnosis of DOC patients.

Clinical trial registration: [https://ichgcp.net/clinical-trials-registry/NCT03732092], [identifier NCT03732092].

Keywords: diagnosis; disorders of consciousness; minimally conscious state; olfactory stimulation; prognosis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wang, Zhang, Liu, Zhang, Hu, Sun and Di.

Figures

FIGURE 1
FIGURE 1
(A) The number of DOC patients’ responses to the olfactory and water stimuli. Fourteen showed behavioral responses to the 1-Octen-3-ol stimulus, 10 showed behavioral responses to the pyridine, and 2 showed behavioral responses to the water stimulus. (B) The number of responses for MCS and UWS patients to the 1-Octen-3-ol stimulus. No UWS patients showed a behavioral response to the 1-Octen-3-ol stimulus, and 14 MCS patients showed an obvious behavioral response to the 1-Octen-3-ol stimulus (93.3%). (C) The number of responses for MCS and UWS patients to the pyridine. One UWS patient showed behavioral response to the pyridine (12.5%), and nine MCS patients showed an obvious behavioral response to the pyridine (60%). (D) The number of responses to the 1-Octen-3-ol and pyridine stimuli for MCS patients. Fourteen MCS patients showed an obvious behavioral response to the 1-Octen-3-ol stimulus (93.3%). Nine MCS patients showed an obvious behavioral response to the pyridine (60%). **p < 0.01; ***p < 0.001; ns, no significant difference; black (+), behavioral responses to an olfactory stimulus; gray (–): no behavioral responses to an olfactory stimulus; UWS: unresponsive wakefulness syndrome; MCS, minimally conscious state.

References

    1. Arzi A., Rozenkrantz L., Gorodisky L., Rozenkrantz D., Holtzman Y., Ravia A., et al. (2020). Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature 581 428–433. 10.1038/s41586-020-2245-5
    1. Bensafi M., Rouby C., Farget V., Bertrand B., Vigouroux M., Holley A. (2002). Autonomic nervous system responses to odours: the role of pleasantness and arousal. Chem. Senses 27 703–709. 10.1093/chemse/27.8.703
    1. Bruno M. A., Vanhaudenhuyse A., Thibaut A., Moonen G., Laureys S. (2011). From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J. Neurol. 258 1373–1384. 10.1007/s00415-011-6114-x
    1. Chen D., Katdare A., Lucas N. (2006). Chemosignals of fear enhance cognitive performance in humans. Chem. Senses 31 415–423. 10.1093/chemse/bjj046
    1. Chu S., Downes J. J. (2002). Proust nose best: odors are better cues of autobiographical memory. Mem. Cogn. 30 511–518. 10.3758/bf03194952
    1. Cohen I., Sebe N., Garg A., Chen L. S., Huang T. S. (2003). Facial expression recognition from video sequences: temporal and static modeling. Comput. Vis. Image Underst. 91 160–187. 10.1371/journal.pone.0014679
    1. De Bruijn M. J., Bender M. (2018). Olfactory cues are more effective than visual cues in experimentally triggering autobiographical memories. Memory 24 547–558. 10.1080/09658211.2017.1381744
    1. de Groot J. H., Smeets M. A., Kaldewaij A., Duijndam M. J., Semin G. R. (2012). Chemosignals communicate human emotions. Psychol. Sci. 23 1417–1424. 10.1177/0956797612445317
    1. Giacino J. T., Ashwal S., Childs N., Cranford R., Jennett B., Katz D. I., et al. (2002). The minimally conscious state: definition and diagnostic criteria. Neurology 58 349–353. 10.1212/wnl.58.3.349
    1. Giacino J. T., Kalmar K., Whyte J. (2004). The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85 2020–2029. 10.1016/j.apmr.2004.02.033
    1. Gottfried J. A., Zelano C. (2011). The value of identity: olfactory notes on orbitofrontal cortex function. Ann. N. Y. Acad. Sci. 1239 138–148. 10.1111/j.1749-6632.2011.06268.x
    1. Herba C., Phillips M., Herba C., Phillips M. (2004). Annotation: development of facial expression recognition from childhood to adolescence: behavioural and neurological perspectives. J. Child Psychol. Psychiatry 45 1185–1198. 10.1111/j.1469-7610.2004.00316.x
    1. Kalmar K., Giacino J. T. (2005). The JFK coma recovery scale–revised. Neuropsychol. Rehabil. 15 454–460. 10.1080/09602010443000425
    1. Kotila M., Numminen H., Waltimo O., Kaste M. (1998). Depression after stroke: results of the finnstroke Study. Stroke 29 368–372. 10.1161/01.str.29.2.368
    1. Laureys S., Celesia G. G., Cohadon F., Lavrijsen J., Leon-Carrion J., Sannita W. G., et al. (2010). Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med. 8:68. 10.1186/1741-7015-8-68
    1. Laureys S., Goldman S., Phillips C., Van Bogaert P., Aerts J., Luxen A., et al. (1999). Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. NeuroImage 9 377–382. 10.1006/nimg.1998.0414
    1. Leinwand S. G., Chalasani S. H. (2011). Olfactory networks: from sensation to perception. Curr. Opin. Genet. Dev. 21 806–811. 10.1016/j.gde.2011.07.006
    1. Narushima K., Robinson R. G. (2002). Stroke-related depression. Curr. Atherosc. Rep. 4:296. 10.1007/s11883-002-0009-3
    1. Nigri A., Ferraro S., Bruzzone M. G., Nava S., D’Incerti L., Bertolino N., et al. (2016). Central olfactory processing in patients with disorders of consciousness. Eur. J. Neurol. 23 605–612. 10.1111/ene.12907
    1. Pause B. M., Ohrt A., Prehn A., Ferstl R. (2004). Positive emotional priming of facial affect perception in females is diminished by chemosensory anxiety signals. Chem. Senses 29 797–805. 10.1093/chemse/bjh245
    1. Pouliot S., Jones-Gotman M. (2008). Medial temporal-lobe damage and memory for emotionally arousing odors. Neuropsychologia 46 1124–1134. 10.1016/j.neuropsychologia.2007.10.017
    1. Prehn A., Ohrt A., Sojka B., Ferstl R., Pause B. M. (2006). Chemosensory anxiety signals augment the startle reflex in humans. Neurosci. Lett. 394 127–130. 10.1016/j.neulet.2005.10.012
    1. Rolls E. T., Grabenhorst F., Parris B. A. (2010). Neural systems underlying decisions about affective odors. J. Cogn. Neurosci. 22 1069–1082. 10.1162/jocn.2009.21231
    1. Smith Y. (2008). The thalamus. Neurosci. Med. 7 419–442.
    1. Soussignan R., Schaal B., Marlier L., Jiang T. (1997). Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: re-examining early hedonic discrimination of odors. Physiol. Behav. 62, 745–758. 10.1016/s0031-9384(97)00187-x
    1. Stender J., Gosseries O., Bruno M. A., Charland-Verville V., Vanhaudenhuyse A., Demertzi A., et al. (2014). Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 384 514–522. 10.1016/S0140-6736(14)60042-8
    1. van Erp W. S., Lavrijsen J. C., Vos P. E., Bor H., Laureys S., Koopmans R. T. (2015). The vegetative state: prevalence, misdiagnosis, and treatment limitations. J. Am. Med. Dir. Assoc. 16 85.e9–85.e14. 10.1016/j.jamda.2014.10.014
    1. Vernet-Maury E., Alaoui-Ismaili O., Dittmar A., Delhomme G., Chanel J. (1999). Basic emotions induced by odorants: a new approach based on autonomic pattern results. J. Auton. Nerv. Syst. 75, 176–183. 10.1016/s0165-1838(98)00168-4
    1. Wang J., Hu X., Hu Z., Sun Z., Laureys S., Di H. (2020). The misdiagnosis of prolonged disorders of consciousness by a clinical consensus compared with repeated coma-recovery scale-revised assessment. BMC Neurol. 20:343. 10.1186/s12883-020-01924-9
    1. Wannez S., Heine L., Thonnard M., Gosseries O., Laureys S. Coma Science Group (2017). The repetition of behavioral assessments in diagnosis of disorders of consciousness. Ann. Neurol. 81 883–889. 10.1002/ana.24962
    1. Watanabe K., Masaoka Y., Kawamura M., Yoshida M., Koiwa N., Yoshikawa A., et al. (2018). Left posterior orbitofrontal ciortex Is associated with odor-induced autobiographical memory: an fMRI study. Front. Psychol. 9:687. 10.3389/fpsyg.2018.00687
    1. Zald D. H., Pardo J. V. (1997). Emotion, olaction, and the human amygdala: Amygdala during aversive olfactory stimulation. Proc. Natl. Acad. Sci. U.S.A. 94 4119–4124. 10.1073/pnas.94.8.4119
    1. Zhang Y., Wang J., Schnakers C., He M., Luo H., Cheng L., et al. (2019). Validation of the Chinese version of the Coma Recovery Scale-Revised (CRS-R). Brain Inj. 33 529–533. 10.1080/02699052.2019.1566832
    1. Zhou W., Chen D. (2009). Fear-related chemosignals modulate recognition of fear in ambiguous facial expressions. Psychol. Sci. 20 177–183. 10.1111/j.1467-9280.2009.02263.x

Source: PubMed

3
購読する