Measurement and implications of the distance between the sphenopalatine ganglion and nasal mucosa: a neuroimaging study

Joan Crespi, Daniel Bratbak, David Dodick, Manjit Matharu, Kent Are Jamtøy, Irina Aschehoug, Erling Tronvik, Joan Crespi, Daniel Bratbak, David Dodick, Manjit Matharu, Kent Are Jamtøy, Irina Aschehoug, Erling Tronvik

Abstract

Background: Historical reports describe the sphenopalatine ganglion (SPG) as positioned directly under the nasal mucosa. This is the basis for the topical intranasal administration of local anaesthetic (LA) towards the sphenopalatine foramen (SPF) which is hypothesized to diffuse a distance as short as 1 mm. Nonetheless, the SPG is located in the sphenopalatine fossa, encapsulated in connective tissue, surrounded by fat tissue and separated from the nasal cavity by a bony wall. The sphenopalatine fossa communicates with the nasal cavity through the SPF, which contains neurovascular structures packed with connective tissue and is covered by mucosa in the nasal cavity. Endoscopically the SPF does not appear open. It has hitherto not been demonstrated that LA reaches the SPG using this approach.

Methods: Our group has previously identified the SPG on 3 T-MRI images merged with CT. This enabled us to measure the distance from the SPG to the nasal mucosa covering the SPF in 20 Caucasian subjects on both sides (n = 40 ganglia). This distance was measured by two physicians. Interobserver variability was evaluated using the intraclass correlation coefficient (ICC).

Results: The mean distance from the SPG to the closest point of the nasal cavity directly over the mucosa covering the SPF was 6.77 mm (SD 1.75; range, 4.00-11.60). The interobserver variability was excellent (ICC 0.978; 95% CI: 0.939-0.990, p < 0.001).

Conclusions: The distance between the SPG and nasal mucosa over the SPF is longer than previously assumed. These results challenge the assumption that the intranasal topical application of LA close to the SPF can passively diffuse to the SPG.

Keywords: Block; Intranasal; Local anaesthetics; Pterygopalatine ganglion; Sphenopalatine ganglion.

Conflict of interest statement

Competing interests

The authors declare that they have no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Axial images through the SPG in one of the patients. Left: T1 weighted MRI. Right: CT scan. Both images show the same anatomical plane. The SPG (red dot) is first localized in the MRI scan and the closest point of the nasal mucosa through the SPF is localized in fusioned CT images. In this example, the distance was 8.1 mm (yellow line). Notice the typical crescent form of the SPG anterior to the opening of the Vidian canal
Fig. 2
Fig. 2
Illustration of the relation between the nasal cavity and the sphenopalatine fossa (axial plane). In order to reach the SPG, a drug applied intranasally over the sphenopalatine foramen will have to diffuse through mucosa, the sphenopalatine foramen, which is packed with neuro-vascular structures and connective tissue, and the fat tissue filling the sphenopalatine fossa. SPF: sphenopalatine foramen; SPG: sphenopalatine ganglion
Fig. 3
Fig. 3
Rhinoscopy showing the mucosa over the sphenopalatine foramen (SPF) and the sphenopalatine artery (arrow). The SPF does not appear as an open foramen communicating directly with the sphenopalatine fossa. The SPF is covered by mucosa and packed with neurovascular structures and connective tissue
Fig. 4
Fig. 4
Diagram showing the involvement of the sphenopalatine ganglion (SPG) in the physiopathology of trigeminoautonomic headaches. The afferent part of this loop is mediated by the trigeminal nerve, which sends nociceptive signals from the dural blood vessels to the trigeminocervical complex. This information projects to higher brain structures, resulting in cephalic pain. The efferent part of this loop conveys mostly through the superior salivatory nucleus, exiting the brain stem via the facial nerve and reaching the sphenopalatine ganglion through the greater petrosal nerve. Postganglionic fibres exit the sphenopalatine nerve towards the dural vessels, closing the loop. Blocking the SPG might reduce the afferent input of signals towards the trigeminal system and reduce the activation of the trigeminocervical complex. CNS: central nervous system

References

    1. Sluder G (1908) The role of the sphenopalatine ganglion in nasal headaches. AR Elliott Publishing Company. N Y State J Med 27:8–13.
    1. Robbins MS, Robertson CE, Kaplan E, Ailani J, Charleston L, Kuruvilla D, et al. The sphenopalatine ganglion: anatomy, pathophysiology, and therapeutic targeting in headache. Headache. 2016;56(2):240–258. doi: 10.1111/head.12729.
    1. Androulakis XM, Krebs KA, Ashkenazi A. Hemicrania continua may respond to repetitive sphenopalatine ganglion block: a case report. Headache. 2016;56(3):573–579. doi: 10.1111/head.12783.
    1. Maizels M, Scott B, Cohen W, Chen W. Intranasal lidocaine for treatment of migraine: a randomized, double-blind, controlled trial. JAMA. 1996;276(4):319–321. doi: 10.1001/jama.1996.03540040063034.
    1. Maizels M, Geiger AM. Intranasal lidocaine for migraine: a randomized trial and open-label follow-up. Headache. 1999;39(8):543–551. doi: 10.1046/j.1526-4610.1999.3908543.x.
    1. Marmura MJ, Silberstein SD, Schwedt TJ. The acute treatment of migraine in adults: the american headache society evidence assessment of migraine pharmacotherapies. Headache. 2015;55(1):3–20. doi: 10.1111/head.12499.
    1. Sluder G. The anatomical and clinical relations of the sphenopalatine (Meckel’s) ganglion to the nose and its accessory sinuses. N Y Med J. 1909;28:293–298.
    1. Bratbak DF, Folvik M, Nordgard S, Stovner LJ, Dodick DW, Matharu M, Tronvik, E (2017) Depicting the pterygopalatine ganglion on 3 Tesla magnetic resonance images. Surg Radiol Anat. 10.1007/s00276-017-1960-6
    1. Keller H (1980) Über Die Hintere Pfortenregion Der Fossa Pterygopalatina Und Die Lage Des Ganglion Pterygopalatinum. Doctoral Dissertation, Julius-Maximilans-Universitäts Würburg.
    1. Bratbak DF, Nordgard S, Stovner LJ, Linde M, Folvik M, Bugten V, et al. Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic cluster headache. Cephalalgia. 2016;36(6):503–509. doi: 10.1177/0333102415597891.
    1. Bratbak DF, Nordgard S, Stovner LJ, Linde M, Dodick DW, Aschehoug I, Tronvik, E (2017) Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic migraine. Cephalalgia, 37(4):356-64
    1. Kittrelle JP, Grouse DS, Seybold ME. Cluster headache. Local anesthetic abortive agents. Arch Neurol. 1985;42(5):496–498. doi: 10.1001/archneur.1985.04060050098017.
    1. Cady R, Saper J, Dexter K, Manley HR. A double-blind, placebo-controlled study of repetitive transnasal sphenopalatine ganglion blockade with tx360((R)) as acute treatment for chronic migraine. Headache. 2015;55(1):101–116. doi: 10.1111/head.12458.
    1. Penteshina, NA (1965) Morphology of the Pterygopalatine Ganglion. Zh Nevropat Psikhiat 65(9):1325–30.
    1. Windsor RE, Jahnke S. Sphenopalatine ganglion blockade: a review and proposed modification of the transnasal technique. Pain Physician. 2004;7(2):283–286.
    1. Ruskin AP. Sphenopalatine (nasal) ganglion: remote effects including “psychosomatic” symptoms, rage reaction, pain, and spasm. Arch Phys Med Rehabil. 1979;60(8):353–359.
    1. Berger JJ, Pyles ST, Saga-Rumley SA. Does topical anesthesia of the sphenopalatine ganglion with cocaine or lidocaine relieve low back pain? Anesth Analg. 1986;65(6):700–702. doi: 10.1213/00000539-198606000-00025.
    1. Rusu MC, Pop F, Curca GC, Podoleanu L, Voinea LM. The pterygopalatine ganglion in humans: a morphological study. Ann Anat. 2009;191(2):196–202. doi: 10.1016/j.aanat.2008.09.008.
    1. Gregoire A, Clair C, Delabrousse E, Aubry R, Boulahdour Z, Kastler B. CT guided neurolysis of the sphenopalatine ganglion for management of refractory trigeminal neuralgia. J Radiol. 2002;83(9 Pt 1):1082–1084.
    1. Barre F. Cocaine as an abortive agent in cluster headache. Headache. 1982;22(2):69–73. doi: 10.1111/j.1526-4610.1982.hed2202069.x.
    1. Alherabi A, Marglani O, Herzallah IR, Shaibah H, Alaidarous T, Alkaff H, et al. Endoscopic localization of the sphenopalatine foramen: do measurements matter? Eur Arch Otorhinolaryngol. 2014;271(9):2455–2460. doi: 10.1007/s00405-014-2881-1.
    1. Scanavine AB, Navarro JA, Megale SR, Anselmo-Lima WT. Anatomical study of the sphenopalatine foramen. Brazilian J Otorhinolaryngology. 2009;75(1):37–41. doi: 10.1016/S1808-8694(15)30829-6.
    1. Prades JM, Asanau A, Timoshenko AP, Faye MB, Martin C. Surgical anatomy of the sphenopalatine foramen and its arterial content. Surgical Radiologic Anatomy : SRA. 2008;30(7):583–587. doi: 10.1007/s00276-008-0390-x.
    1. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache. 2009;49(8):1131–1143. doi: 10.1111/j.1526-4610.2009.01501.x.
    1. Raskin, NH (1988) The Hypnic Headache Syndrome. Headache: the journal of head and face pain 28(8):534–36.
    1. Robbins L. Intranasal lidocaine for cluster headache. Headache. 1995;35(2):83–84. doi: 10.1111/j.1526-4610.1995.hed3502083.x.
    1. Hardebo JE, Elner A. Nerves and vessels in the pterygopalatine fossa and symptoms of cluster headache. Headache. 1987;27(10):528–532. doi: 10.1111/j.1526-4610.1987.hed2710528.x.
    1. Schueler M, Messlinger K, Dux M, Neuhuber WL, De Col R. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain. 2013;154(9):1622–1631. doi: 10.1016/j.pain.2013.04.040.
    1. Blanda M, Rench T, Gerson LW, Weigand JV. Intranasal lidocaine for the treatment of migraine headache: a randomized, controlled trial. Acad Emerg Med Off J Soc Acad Emerg Med. 2001;8(4):337–342. doi: 10.1111/j.1553-2712.2001.tb02111.x.
    1. Pfaffenrath V, Fenzl E, Bregman D, Farkkila M. Intranasal ketorolac tromethamine (SPRIX(R)) containing 6% of lidocaine (ROX-828) for acute treatment of migraine: safety and efficacy data from a phase II clinical trial. Cephalalgia. 2012;32(10):766–777. doi: 10.1177/0333102412451359.
    1. Schaffer JT, Hunter BR, Ball KM, Weaver CS. Noninvasive sphenopalatine ganglion block for acute headache in the emergency department: a randomized placebo-controlled trial. Ann Emerg Med. 2015;65(5):503–510. doi: 10.1016/j.annemergmed.2014.12.012.
    1. Cady RK, Saper J, Dexter K, Cady RJ, Manley HR. Long-term efficacy of a double-blind, placebo-controlled, randomized study for repetitive sphenopalatine blockade with bupivacaine vs. saline with the Tx360 device for treatment of chronic migraine. Headache. 2015;55(4):529–542. doi: 10.1111/head.12546.
    1. Saade E, Paige GB. Patient-administered sphenopalatine ganglion block. Reg Anesth. 1996;21(1):68–70.
    1. Costa A, Pucci E, Antonaci F, Sances G, Granella F, Broich G, et al. The effect of intranasal cocaine and lidocaine on nitroglycerin-induced attacks in cluster headache. Cephalalgia. 2000;20(2):85–91. doi: 10.1046/j.1468-2982.2000.00026.x.
    1. Raj PLL, Erdine S, et al. Radiographic imaging for regional anesthesia and pain management. New York: Churchill Livingstone; 2003. pp. 66–71.
    1. Levin M. Nerve blocks in the treatment of headache. Neurotherapeutics. 2010;7(2):197–203. doi: 10.1016/j.nurt.2010.03.001.
    1. Mohammadkarimi N, Jafari M, Mellat A, Kazemi E, Shirali A. Evaluation of efficacy of intra-nasal lidocaine for headache relief in patients refer to emergency department. J Res Med Sci. 2014;19(4):331–335.
    1. Kudrow L, Kudrow DB. Intranasal lidocaine. Headache. 1995;35(9):565–566. doi: 10.1111/j.1526-4610.1995.hed3509565_2.x.
    1. Maizels M. Intranasal lidocaine to prevent headache following migraine aura. Headache. 1999;39(6):439–442. doi: 10.1046/j.1526-4610.1999.3906439.x.
    1. Saberski L, Ahmad M, Wiske P. Sphenopalatine ganglion block for treatment of sinus arrest in postherpetic neuralgia. Headache. 1999;39(1):42–44. doi: 10.1046/j.1526-4610.1999.3901042.x.
    1. Chae HSJ, Nguyen M, Lee A. The use of intranasal sphenopalatine ganglion blockade for the treatment of post-traumatic headache: a case series. Arch Phys Med Rehabil. 2006;87:E39. doi: 10.1016/j.apmr.2006.08.233.
    1. Cohen S, Sakr A, Katyal S, Chopra D. Sphenopalatine ganglion block for postdural puncture headache. Anaesthesia. 2009;64(5):574–575. doi: 10.1111/j.1365-2044.2009.05925.x.
    1. Bakbak B, Gedik S, Koktekir BE, Okka M. Cluster headache with ptosis responsive to intranasal lidocaine application: a case report. J Med Case Rep. 2012;6:64. doi: 10.1186/1752-1947-6-64.
    1. Candido KD, Massey ST, Sauer R, Darabad RR, Knezevic NN. A novel revision to the classical transnasal topical sphenopalatine ganglion block for the treatment of headache and facial pain. Pain Physician. 2013;16(6):E769–E778.
    1. Cohen S, Ramos D, Grubb W, Mellender S, Mohiuddin A, Chiricolo A. Sphenopalatine ganglion block: a safer alternative to epidural blood patch for postdural puncture headache. Reg Anesth Pain Med. 2014;39(6):563. doi: 10.1097/AAP.0000000000000172.
    1. Dance LAD, Schaefer C, Kaye R, Yonker M, Towbin, R (2017) Safety and efficacy of sphenopalatine ganglion blockade in children – initial experience. Journal of Vascular and Interventional Radiology 28:2(Supplement S8).

Source: PubMed

3
購読する