Adrenomedullin: a marker of impaired hemodynamics, organ dysfunction, and poor prognosis in cardiogenic shock

Heli Tolppanen, Mercedes Rivas-Lasarte, Johan Lassus, Jordi Sans-Roselló, Oliver Hartmann, Matias Lindholm, Mattia Arrigo, Tuukka Tarvasmäki, Lars Köber, Holger Thiele, Kari Pulkki, Jindrich Spinar, John Parissis, Marek Banaszewski, Jose Silva-Cardoso, Valentina Carubelli, Alessandro Sionis, Veli-Pekka Harjola, Alexandre Mebazaa, Heli Tolppanen, Mercedes Rivas-Lasarte, Johan Lassus, Jordi Sans-Roselló, Oliver Hartmann, Matias Lindholm, Mattia Arrigo, Tuukka Tarvasmäki, Lars Köber, Holger Thiele, Kari Pulkki, Jindrich Spinar, John Parissis, Marek Banaszewski, Jose Silva-Cardoso, Valentina Carubelli, Alessandro Sionis, Veli-Pekka Harjola, Alexandre Mebazaa

Abstract

Background: The clinical CardShock risk score, including baseline lactate levels, was recently shown to facilitate risk stratification in patients with cardiogenic shock (CS). As based on baseline parameters, however, it may not reflect the change in mortality risk in response to initial therapies. Adrenomedullin is a prognostic biomarker in several cardiovascular diseases and was recently shown to associate with hemodynamic instability in patients with septic shock. The aim of our study was to evaluate the prognostic value and association with hemodynamic parameters of bioactive adrenomedullin (bio-ADM) in patients with CS.

Methods: CardShock was a prospective, observational, European multinational cohort study of CS. In this sub-analysis, serial plasma bio-ADM and arterial blood lactate measurements were collected from 178 patients during the first 10 days after detection of CS.

Results: Both bio-ADM and lactate were higher in 90-day non-survivors compared to survivors at all time points (P < 0.05 for all). Lactate showed good prognostic value during the initial 24 h (AUC 0.78 at admission and 0.76 at 24 h). Subsequently, lactate returned normal (≤2 mmol/L) in most patients regardless of later outcome with lower prognostic value. By contrast, bio-ADM showed increasing prognostic value from 48 h and beyond (AUC 0.71 at 48 h and 0.80 at 5-10 days). Serial measurements of either bio-ADM or lactate were independent of and provided added value to CardShock risk score (P < 0.001 for both). Ninety-day mortality was more than double higher in patients with high levels of bio-ADM (>55.7 pg/mL) at 48 h compared to those with low bio-ADM levels (49.1 vs. 22.6%, P = 0.001). High levels of bio-ADM were associated with impaired cardiac index, mean arterial pressure, central venous pressure, and systolic pulmonary artery pressure during the study period. Furthermore, high levels of bio-ADM at 48 to 96 h were related to persistently impaired cardiac and end-organ function.

Conclusions: Bio-ADM is a valuable prognosticator and marker of impaired hemodynamics in CS patients. High levels of bio-ADM may show shock refractoriness and developing end-organ dysfunction and thus help to guide therapeutic approach in patients with CS. Study identifier of CardShock study NCT01374867 at clinicaltrials.gov.

Keywords: Adrenomedullin; Biomarkers; Cardiogenic shock; Hemodynamics; Lactate; Mortality.

Figures

Fig. 1
Fig. 1
Time course of lactate (left) and bioactive adrenomedullin (bio-ADM) (right) levels in 90-day survivors (white boxes) and non-survivors (gray boxes). Box and whisker plot: central line = median, box = interquartile range, whiskers = 5th and 95th percentile, circles = outliers. Scatted line upper normal limit (2 mmol/L for lactate and 43 pg/mL for bio-ADM [8]). n = number of samples at each study time point. P values for all comparisons between survivors and non-survivors at each time point were <0.001, except for lactate at 48, 72, and 96 h, and bio-ADM at 0 h with P < 0.05
Fig. 2
Fig. 2
Area under the curve (AUC) of lactate (gray line) and bioactive adrenomedullin, bio-ADM, (black line) to discriminate between 90-day survivors and non-survivors at each time point
Fig. 3
Fig. 3
Ninety-day survival of patients with high (>55.7 pg/mL) or low (≤55.7 pg/mL) levels of bio-ADM at 48 h (P value = 0.001 with log-rank testing)
Fig. 4
Fig. 4
Comparison of hemodynamics between patients with a high and low bioactive adrenomedullin (bio-ADM) and b high and low lactate levels. Data presented as median with interquartile range of hemodynamic and biomarker data collected during the initial 96 h. The number (n) of patients with each measure is indicated on top of the box plot. CI cardiac index (L/min/m2), MAP mean arterial pressure (mmHg), CVP central venous pressure (mmHg), sPAP systolic pulmonary artery pressure (mmHg). Dichotomization of biomarker values was based on median lactate (1.63 mmol/L) or bio-ADM (55.7 pg/ml) during the study period. P value based on Wilcoxon rank-sum test
Fig. 5
Fig. 5
Association of bioactive adrenomedullin (bio-ADM) with hemodynamics and organ dysfunction at 48–96 h. Dichotomization of bio-ADM was based on 55.7 pg/ml cut-point at 48–96 h. The number (n) of patients with each measure is indicated on top of the box plot. P value based on Wilcoxon rank-sum test. CI cardiac index (L/min/m2), CVP central venous pressure (mmHg), eGRF estimated glomerular filtration rate (ml/min/1.73m2), ALAT alanine transaminase (UI/L)

References

    1. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–1296. doi: 10.1056/NEJMoa1208410.
    1. Harjola VP, Lassus J, Sionis A, Kober L, Tarvasmaki T, Spinar J, et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail. 2015;17(5):501–509. doi: 10.1002/ejhf.260.
    1. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117(5):686–697. doi: 10.1161/CIRCULATIONAHA.106.613596.
    1. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;171(2):221–226. doi: 10.1016/S0002-9610(97)89552-9.
    1. Attana P, Lazzeri C, Chiostri M, Picariello C, Gensini GF, Valente S. Lactate clearance in cardiogenic shock following ST elevation myocardial infarction: a pilot study. Acute Card Care. 2012;14(1):20–26. doi: 10.3109/17482941.2011.655293.
    1. Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis*. Crit Care Med. 2014;42(9):2118–2125. doi: 10.1097/CCM.0000000000000405.
    1. Katayama T, Nakashima H, Takagi C, Honda Y, Suzuki S, Yano K. Predictors of mortality in patients with acute myocardial infarction and cardiogenic shock. Circ J. 2005;69(1):83–88. doi: 10.1253/circj.69.83.
    1. Marino R, Struck J, Maisel AS, Magrini L, Bergmann A, Di Somma S. Plasma adrenomedullin is associated with short-term mortality and vasopressor requirement in patients admitted with sepsis. Crit Care. 2014;18(1):R34. doi: 10.1186/cc13731.
    1. Pio R, Martinez A, Unsworth EJ, Kowalak JA, Bengoechea JA, Zipfel PF, et al. Complement factor H is a serum-binding protein for adrenomedullin, and the resulting complex modulates the bioactivities of both partners. J Biol Chem. 2001;276(15):12292–12300. doi: 10.1074/jbc.M007822200.
    1. Lewis LK, Smith MW, Yandle TG, Richards AM, Nicholls MG. Adrenomedullin(1-52) measured in human plasma by radioimmunoassay: plasma concentration, adsorption, and storage. Clin Chem. 1998;44(3):571–577.
    1. Struck J, Tao C, Morgenthaler NG, Bergmann A. Identification of an Adrenomedullin precursor fragment in plasma of sepsis patients. Peptides. 2004;25(8):1369–1372. doi: 10.1016/j.peptides.2004.06.019.
    1. Di Somma S, Magrini L, Travaglino F, Lalle I, Fiotti N, Cervellin G, et al. Opinion paper on innovative approach of biomarkers for infectious diseases and sepsis management in the emergency department. Clin Chem Lab Med. 2013;51(6):1167–1175. doi: 10.1515/cclm-2012-0795.
    1. Harrell FE. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001.
    1. Hartmann O, Schuetz P, Albrich WC, Anker SD, Mueller B, Schmidt T. Time-dependent Cox regression: serial measurement of the cardiovascular biomarker proadrenomedullin improves survival prediction in patients with lower respiratory tract infection. Int J Cardiol. 2012;161(3):166–173. doi: 10.1016/j.ijcard.2012.09.014.
    1. Tzikas S, Keller T, Ojeda FM, Zeller T, Wild PS, Lubos E, et al. MR-proANP and MR-proADM for risk stratification of patients with acute chest pain. Heart. 2013;99(6):388–395. doi: 10.1136/heartjnl-2012-302956.
    1. Potocki M, Breidthardt T, Reichlin T, Morgenthaler NG, Bergmann A, Noveanu M, et al. Midregional pro-adrenomedullin in addition to b-type natriuretic peptides in the risk stratification of patients with acute dyspnea: an observational study. Crit Care. 2009;13(4):R122. doi: 10.1186/cc7975.
    1. Shah RV, Truong QA, Gaggin HK, Pfannkuche J, Hartmann O, Januzzi JL., Jr Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur Heart J. 2012;33(17):2197–2205. doi: 10.1093/eurheartj/ehs136.
    1. Maisel A, Mueller C, Nowak RM, Peacock WF, Ponikowski P, Mockel M, et al. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2011;58(10):1057–1067. doi: 10.1016/j.jacc.2011.06.006.
    1. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola VP, et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol. 2013;168(3):2186–2194. doi: 10.1016/j.ijcard.2013.01.228.
    1. Katayama T, Nakashima H, Honda Y, Suzuki S, Yano K. Relationship between adrenomedullin and left-ventricular systolic function and mortality in acute myocardial infarction. Angiology. 2005;56(1):35–42. doi: 10.1177/000331970505600105.
    1. Khan SQ, O’Brien RJ, Struck J, Quinn P, Morgenthaler N, Squire I, et al. Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study. J Am Coll Cardiol. 2007;49(14):1525–1532. doi: 10.1016/j.jacc.2006.12.038.
    1. Luyt CE, Landivier A, Leprince P, Bernard M, Pavie A, Chastre J, et al. Usefulness of cardiac biomarkers to predict cardiac recovery in patients on extracorporeal membrane oxygenation support for refractory cardiogenic shock. J Crit Care. 2012;27(5):524e7-14. doi: 10.1016/j.jcrc.2011.12.009.
    1. Onitsuka H, Imamura T, Yamaga J, Kuwasako K, Kitamura K, Eto T. Angiotensin II stimulates cardiac adrenomedullin production and causes accumulation of mature adrenomedullin independently of hemodynamic stress in vivo. Horm Metab Res. 2005;37(5):281–285. doi: 10.1055/s-2005-861471.
    1. Sugo S, Minamino N, Shoji H, Kangawa K, Kitamura K, Eto T, et al. Interleukin-1, tumor necrosis factor and lipopolysaccharide additively stimulate production of adrenomedullin in vascular smooth muscle cells. Biochem Biophys Res Commun. 1995;207(1):25–32. doi: 10.1006/bbrc.1995.1148.
    1. Kato J, Tsuruda T, Kita T, Kitamura K, Eto T. Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol. 2005;25(12):2480–2487. doi: 10.1161/01.ATV.0000184759.91369.f8.
    1. von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12(5):484–491. doi: 10.1093/eurjhf/hfq031.
    1. Nishio K, Akai Y, Murao Y, Doi N, Ueda S, Tabuse H, et al. Increased plasma concentrations of adrenomedullin correlate with relaxation of vascular tone in patients with septic shock. Crit Care Med. 1997;25(6):953–957. doi: 10.1097/00003246-199706000-00010.
    1. Mebazaa A, Yilmaz MB, Levy P, Ponikowski P, Peacock WF, Laribi S, et al. Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine. Eur J Heart Fail. 2015;17(6):544–558. doi: 10.1002/ejhf.289.
    1. Thiele H, Ohman EM, Desch S, Eitel I, de Waha S. Management of cardiogenic shock. Eur Heart J. 2015;36(20):1223–1230. doi: 10.1093/eurheartj/ehv051.
    1. Mebazaa A, Tolppanen H, Mueller C, Lassus J, DiSomma S, Baksyte G, et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 2016;42(2):147–63. doi: 10.1007/s00134-015-4041-5.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;18(8):891–975. doi: 10.1002/ejhf.592.
    1. Kohsaka S, Menon V, Lowe AM, Lange M, Dzavik V, Sleeper LA, et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165(14):1643–1650. doi: 10.1001/archinte.165.14.1643.
    1. Task Force on the management of STseamiotESoC. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–2619. doi: 10.1093/eurheartj/ehs215.
    1. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Jr, Chung MK, de Lemos JA, et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362–e425. doi: 10.1161/CIR.0b013e3182742cf6.
    1. Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J Am Coll Cardiol. 2015;65(19):e7–e26. doi: 10.1016/j.jacc.2015.03.036.
    1. Werdan K, Gielen S, Ebelt H, Hochman JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–167. doi: 10.1093/eurheartj/eht248.

Source: PubMed

3
購読する