Efficacy of Platelet-Rich Plasma in Retarding Intervertebral Disc Degeneration: A Meta-Analysis of Animal Studies

Pei Li, Ruijie Zhang, Qiang Zhou, Pei Li, Ruijie Zhang, Qiang Zhou

Abstract

Objectives: Several animal studies have demonstrated the positive effects of platelet-rich plasma (PRP) on disc degeneration retardation. The present meta-analysis was to verify the efficacy of PRP in retarding disc degeneration in animal.

Methods: Relevant studies were identified and evaluated according to our inclusion and exclusion criteria. The standardized mean difference (SMD) and related 95% confidence interval (95% CI) were estimated to assess PRP efficiency.

Results: In total, eleven studies were included in this meta-analysis. Significant differences were found in the PRP treatment group, which showed increased disc height (SMD = 2.66, 95% CI: 1.86, 3.47, p = 0.000), increased MRI T2 signal intensity (SMD = -3.29, 95% CI: -4.44, -2.13, p = 0.000), and decreased histological degeneration grade (SMD = -4.28, 95% CI: -5.26, -3.30, p = 0.000). However, no significant increase in collagen II expression was found (SMD = 25389.74, 95% CI: -27585.72, 78365.21, p = 0.348). Apart from the subgroup analysis of the disc height based on animal species (pig) and disc degeneration model (chymopapain induction), other subgroup analysis based on animal species (rabbit and rat), study design, disc degeneration model, and follow-up period demonstrated that PRP treatment can significantly restore disc height and increase MRI T2 signal intensity.

Conclusions: PRP treatment is potentially effective in restoring disc height of rodent rabbit and rat, reducing histological degeneration grade, and increasing MRI T2 image signal. PRP injection may be promising therapy for retarding disc degeneration.

Figures

Figure 1
Figure 1
Flow diagram of the literature search and exclusion and inclusion process in the present meta-analysis.
Figure 2
Figure 2
Sensitivity analysis for disc height (a) and MRI T2 signal intensity (b). The three-line table (a and b) indicates the SMD, 95% CI, and heterogeneity before and after the study with obvious variance was removed (SMD: standardized mean difference; 95% CI: 95% confidence interval).
Figure 3
Figure 3
Funnel plot for the publication bias of studies on the effects of platelet-rich plasma (PRP) treatment on disc height (a) and MRI T2 signal intensity (b). The three-line table (a and b) indicates the p value for the Begg test and the Egger test, respectively.

References

    1. Vedicherla S., Buckley C. T. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. Journal of Orthopaedic Research. 2016 doi: 10.1002/jor.23268.
    1. Vo N. V., Hartman R. A., Patil P. R., et al. Molecular mechanisms of biological aging in intervertebral discs. Journal of Orthopaedic Research. 2016;34(8):1289–1306. doi: 10.1002/jor.23195.
    1. Wang Z., Perez-Terzic C. M., Smith J., et al. Efficacy of intervertebral disc regeneration with stem cells - A systematic review and meta-analysis of animal controlled trials. Gene. 2015;564(1):1–8. doi: 10.1016/j.gene.2015.03.022.
    1. Wang W., Hao J., Zheng S., et al. Association between cartilage intermediate layer protein and degeneration of intervertebral disc a meta-analysis. Spine. 2016;41(20):E1244–E1248. doi: 10.1097/BRS.0000000000001749.
    1. Nong L., Huang Y., Zhao S., Xu N. Vitamin D receptor gene, matrix metalloproteinase 3 polymorphisms and the risk of intervertebral disc degeneration susceptibility: Meta-analysis. Asian Spine Journal. 2016;10(5):964–971. doi: 10.4184/asj.2016.10.5.964.
    1. Deng X., Zhao F., Kang B., Zhang X. Elevated interleukin-6 expression levels are associated with intervertebral disc degeneration. Experimental and Therapeutic Medicine. 2016;11(4):1425–1432. doi: 10.3892/etm.2016.3079.
    1. Xu G., Mei Q., Zhou D., Wu J., Han L. Vitamin D Receptor Gene and Aggrecan Gene Polymorphisms and the Risk of Intervertebral Disc Degeneration - A Meta-Analysis. PLoS ONE. 2012;7(11) doi: 10.1371/journal.pone.0050243.e50243
    1. Yan Z., Yin L., Wang Z., et al. A Novel Organ Culture Model of Mouse Intervertebral Disc Tissues. Cells Tissues Organs. 2015;201(1):38–50. doi: 10.1159/000439268.
    1. Urban J. P. G., McMullin J. F. Swelling pressure of the intervertebral disc: Influence of proteoglycan and collagen contents. Biorheology. 1985;22(2):145–157.
    1. Kadow T., Sowa G., Vo N., Kang J. D. Molecular Basis of Intervertebral Disc Degeneration and Herniations: What Are the Important Translational Questions? Clinical Orthopaedics and Related Research. 2015;473(6):1903–1912. doi: 10.1007/s11999-014-3774-8.
    1. Priyadarshani P., Li Y., Yao L. Advances in biological therapy for nucleus pulposus regeneration. Osteoarthritis and Cartilage. 2016;24(2):206–212. doi: 10.1016/j.joca.2015.08.014.
    1. Sakai D., Grad S. Advancing the cellular and molecular therapy for intervertebral disc disease. Advanced Drug Delivery Reviews. 2015;84:159–171. doi: 10.1016/j.addr.2014.06.009.
    1. Lipson S. J., Muir H. Experimental intervertebral disc degeneration: morphologic and proteoglycan changes over time. Arthritis and Rheumatism. 1981;24(1):12–21. doi: 10.1002/art.1780240103.
    1. Cho H., Lee S., Park S.-H., Huang J., Hasty K. A., Kim S.-J. Synergistic effect of combined growth factors in porcine intervertebral disc degeneration. Connective Tissue Research. 2013;54(3):181–186. doi: 10.3109/03008207.2013.775258.
    1. Hayes A. J., Ralphs J. R. The response of foetal annulus fibrosus cells to growth factors: modulation of matrix synthesis by TGF-β1 and IGF-1. Histochemistry and Cell Biology. 2011;136(2):163–175. doi: 10.1007/s00418-011-0835-x.
    1. Yang H., Cao C., Wu C., et al. TGF-βl Suppresses Inflammation in Cell Therapy for Intervertebral Disc Degeneration. Scientific Reports. 2015;5 doi: 10.1038/srep13254.13254
    1. Kim J.-S., Ellman M. B., An H. S., Van Wijnen A. J., Borgia J. A., Im H.-J. Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis and Rheumatism. 2010;62(12):3706–3715. doi: 10.1002/art.27733.
    1. Wang Z., Fu C., Chen Y., et al. FoxC2 enhances BMP7-mediated anabolism in nucleus pulposus cells of the intervertebral disc. PLoS ONE. 2016;11(1) doi: 10.1371/journal.pone.0147764.e0147764
    1. Zhang Y., Phillips F. M., Thonar E. J.-M. A., et al. Cell therapy using articular chondrocytes overexpressing BMP-7 or BMP-10 in a rabbit disc organ culture model. Spine. 2008;33(8):831–838. doi: 10.1097/BRS.0b013e31816b1f38.
    1. Chujo T., An H. S., Akeda K., et al. Effects of growth differentiation factor-5 on the intervertebral disc - In vitro bovine study and in vivo rabbit disc degeneration model study. Spine. 2006;31(25):2909–2917. doi: 10.1097/01.brs.0000248428.22823.86.
    1. Gruber H. E., Hoelscher G. L., Ingram J. A., Bethea S., Hanley E. N. IGF-1 rescues human intervertebral annulus cells from in vitro stress-induced premature senescence. Growth Factors. 2008;26(4):220–225. doi: 10.1080/08977190802273814.
    1. Travascio F., Elmasry S., Asfour S. Modeling the role of IGF-1 on extracellular matrix biosynthesis and cellularity in intervertebral disc. Journal of Biomechanics. 2014;47(10):2269–2276. doi: 10.1016/j.jbiomech.2014.04.046.
    1. Pratsinis H., Kletsas D. PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways. European Spine Journal. 2007;16(11):1858–1866. doi: 10.1007/s00586-007-0408-9.
    1. Gruber H. E., Norton H. J., Hanley E. N., Jr. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine. 2000;25(17):2153–2157. doi: 10.1097/00007632-200009010-00002.
    1. Presciutti S. M., Paglia D. N., Karukonda T., et al. PDGF-BB inhibits intervertebral disc cell apoptosis in vitro. Journal of Orthopaedic Research. 2014;32(9):1181–1188. doi: 10.1002/jor.22638.
    1. Sawamura K., Ikeda T., Nagae M., et al. Characterization of in vivo effects of platelet-rich plasma and biodegradable gelatin hydrogel microspheres on degenerated intervertebral discs. Tissue Engineering - Part A. 2009;15(12):3719–3727. doi: 10.1089/ten.tea.2008.0697.
    1. Marx R. E. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dentistry. 2001;10(4):225–228. doi: 10.1097/00008505-200110000-00002.
    1. Akeda K., An H. S., Pichika R., et al. Platelet-rich plasma (PRP) stimulates the extracellular matrix metabolism of porcine nucleus pulposus and anulus fibrosus cells cultured in alginate beads. Spine. 2006;31(9):959–966. doi: 10.1097/01.brs.0000214942.78119.24.
    1. Chen W. H., Liu H. Y., Lo W. C., et al. Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials. 2009;30(29):5523–5533. doi: 10.1016/j.biomaterials.2009.07.019.
    1. Chen W.-H., Lo W.-C., Lee J.-J., et al. Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-β1 in platelet-rich plasma. Journal of Cellular Physiology. 2006;209(3):744–754. doi: 10.1002/jcp.20765.
    1. Cho H., Holt D. C., Smith R., Kim S.-J., Gardocki R. J., Hasty K. A. The Effects of Platelet-Rich Plasma on Halting the Progression in Porcine Intervertebral Disc Degeneration. Artificial Organs. 2016;40(2):190–195. doi: 10.1111/aor.12530.
    1. Mietsch A., Neidlinger-Wilke C., Schrezenmeier H., et al. Evaluation of platelet-rich plasma and hydrostatic pressure regarding cell differentiation in nucleus pulposus tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 2013;7(3):244–252. doi: 10.1002/term.524.
    1. Gui K., Ren W., Yu Y., Li X., Dong J., Yin W. Inhibitory effects of platelet-rich plasma on intervertebral disc degeneration: A preclinical study in a rabbit model. Medical Science Monitor. 2015;21:1368–1375. doi: 10.12659/MSM.892510.
    1. Gullung G. B., Woodall W., Tucci M., James J., Black D., McGuire R. Platelet-rich plasma effects on degenerative disc disease: analysis of histology and imaging in an animal model. Evidence-Based Spine-Care Journal. 2011;2(4):13–18. doi: 10.1055/s-0031-1274752.
    1. Hou Y., Shi G., Shi J., Xu G., Guo Y., Xu P. Study design: in vitro and in vivo assessment of bone morphogenic protein 2 combined with platelet-rich plasma on treatment of disc degeneration. International Orthopaedics. 2016;40(6):1143–1155. doi: 10.1007/s00264-015-2840-5.
    1. Nagae M., Ikeda T., Mikami Y., et al. Intervertebral disc regeneration using platelet-rich plasma and biodegradable gelatin hydrogel microspheres. Tissue Engineering. 2007;13(1):147–158. doi: 10.1089/ten.2006.0042. doi: 10.1089/ten.2007.13.147.
    1. Obata S., Akeda K., Imanishi T., et al. Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: A preclinical study. Arthritis Research and Therapy. 2012;14(6, article no. R241) doi: 10.1186/ar4084.
    1. Wang S.-Z., Jin J.-Y., Guo Y.-D., et al. Intervertebral disc regeneration using platelet-rich plasma-containing bone marrow-derived mesenchymal stem cells: A preliminary investigation. Molecular Medicine Reports. 2016;13(4):3475–3481. doi: 10.3892/mmr.2016.4983.
    1. Yang H., Yuan C., Wu C., et al. The role of TGF-β1/Smad2/3 pathway in platelet-rich plasma in retarding intervertebral disc degeneration. Journal of Cellular and Molecular Medicine. 2016;20(8):1542–1549. doi: 10.1111/jcmm.12847.
    1. Hu X., Wang C., Rui Y. An experimental study on effect of autologous platelet-rich plasma on treatment of early intervertebral disc degeneration. Chinese Journal of Reparative and Reconstructive Surgery. 2012;26(8):977–983.
    1. Gui K., Yu Y., Ren W., Li X., Dong J., Yin W. Interentional effect of platelet-rich plasma (PRP) on a rabbit model of early-stage intervertebral disc degeneration (IDD) Fudan University Journal of Medical Sciences. 2015;42:204–211.
    1. Meng F.-X., Li F., Ye C.-Q., Yin Y.-B., Gao Y. Adipose-derived mesenchymal stem cells combined with platelet gel for repair of intervertebral disc degeneration in rats. Chinese Journal of Tissue Engineering Research. 2013;17(21):3801–3808. doi: 10.3969/j.issn.2095-4344.2013.21.001.
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery. 2010;8(5):336–341. doi: 10.1016/j.ijsu.2010.02.007.
    1. Pfirrmann C. W. A., Metzdorf A., Zanetti M., Hodler J., Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–1878. doi: 10.1097/00007632-200109010-00011.
    1. Nomura T., Mochida J., Okuma M., Nishimura K., Sakabe K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clinical Orthopaedics and Related Research. 2001;(389):94–101.
    1. Macleod M. R., O'Collins T., Howells D. W., Donnan G. A. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke. 2004;35(5):1203–1208. doi: 10.1161/01.STR.0000125719.25853.20.
    1. Crovetti G., Martinelli G., Issi M., et al. Platelet gel for healing cutaneous chronic wounds. Transfusion and Apheresis Science. 2004;30(2):145–151. doi: 10.1016/j.transci.2004.01.004.
    1. Anitua E., Andia I., Ardanza B., Nurden P., Nurden A. T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thrombosis and Haemostasis. 2004;91(1):4–15.
    1. Hughes S. P. F., Freemont A. J., Hukins D. W. L., McGregor A. H., Roberts S. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. Journal of Bone and Joint Surgery - Series B. 2012;94(10):1298–1304. doi: 10.1302/0301-620X.94B10.28986.

Source: PubMed

3
購読する