Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance

Silvia Pica, Daniel M Sado, Viviana Maestrini, Marianna Fontana, Steven K White, Thomas Treibel, Gabriella Captur, Sarah Anderson, Stefan K Piechnik, Matthew D Robson, Robin H Lachmann, Elaine Murphy, Atul Mehta, Derralyn Hughes, Peter Kellman, Perry M Elliott, Anna S Herrey, James C Moon, Silvia Pica, Daniel M Sado, Viviana Maestrini, Marianna Fontana, Steven K White, Thomas Treibel, Gabriella Captur, Sarah Anderson, Stefan K Piechnik, Matthew D Robson, Robin H Lachmann, Elaine Murphy, Atul Mehta, Derralyn Hughes, Peter Kellman, Perry M Elliott, Anna S Herrey, James C Moon

Abstract

Background: Cardiovascular magnetic resonance (CMR) derived native myocardial T1 is decreased in patients with Fabry disease even before left ventricular hypertrophy (LVH) occurs and may be the first non-invasive measure of myocyte sphingolipid storage. The relationship of native T1 lowering prior to hypertrophy and other candidate early phenotype markers are unknown. Furthermore, the reproducibility of T1 mapping has never been assessed in Fabry disease.

Methods: Sixty-three patients, 34 (54%) female, mean age 48±15 years with confirmed (genotyped) Fabry disease underwent CMR, ECG and echocardiographic assessment. LVH was absent in 25 (40%) patients. Native T1 mapping was performed with both Modified Look-Locker Inversion recovery (MOLLI) sequences and a shortened version (ShMOLLI) at 1.5 Tesla. Twenty-one patients underwent a second scan within 24 hours to assess inter-study reproducibility. Results were compared with 63 healthy age and gender-matched volunteers.

Results: Mean native T1 in Fabry disease (LVH positive), (LVH negative) and healthy volunteers was 853±50 ms, 904±46 ms and 968±32 ms (for all p<0.0001) by ShMOLLI sequences. Native T1 showed high inter-study, intra-observer and inter-observer agreement with intra-class correlation coefficients (ICC) of 0.99, 0.98, 0.97 (ShMOLLI) and 0.98, 0.98, 0.98 (MOLLI). In Fabry disease LVH negative individuals, low native T1 was associated with reduced echocardiographic-based global longitudinal speckle tracking strain (-18±2% vs -22±2%, p=0.001) and early diastolic function impairment (E/E'=7 [6-8] vs 5 [5-6], p=0.028).

Conclusion: Native T1 mapping in Fabry disease is a reproducible technique. T1 reduction prior to the onset of LVH is associated with early diastolic and systolic changes measured by echocardiography.

Figures

Figure 1
Figure 1
Native T1 mapping in Fabry disease using ShMOLLI at 1.5 T. Top left: normal. Top right: a Fabry disease subject without LVH but clear myocardial T1 reduction – the myocardium is blue. Bottom left: Typical T1 when LVH present: the myocardial T1 is lower than without LVH and the basal infero-lateral wall has T1 elevation with a normal (pseudonormal?) surrounding area. Bottom right: rarely (4 patients), Fabry disease has a normal T1.
Figure 2
Figure 2
Mean septal T1 in LVH negative patients (n = 25), LVH positive patients (n = 38) and healthy volunteers (n = 63). Red solid line indicates -2SD below the mean native T1 of females healthy volunteers. Blue solid line indicates -2SD below the mean native T1 of males healthy volunteers.
Figure 3
Figure 3
Systolic and diastolic function in LVH negative Fabry disease patients. Global longitudinal speckle tracking strain of LVH negative-T1↓ subjects vs LVH negative-T1N subjects (left); E/E’ of LVH negative-T1↓ subjects vs LVH negative-T1N subjects (right).
Figure 4
Figure 4
Reproducibility of ShMOLLI sequences. ShMOLLI inter-study correlation (upper pannel) and Bland Altman analysis (lower pannel).

References

    1. O’Mahony C, Elliott P. Anderson-fabry disease and the heart. ProgCardiovasc Dis. 2010;52(4):326–335. doi: 10.1016/j.pcad.2009.11.002.
    1. Mehta A, Clarke JTR, Giugliani R, Elliott P, Linhart A, Beck M, Sunder-Plassmann G. Natural course of fabry disease: changing pattern of causes of death in FOS – fabry outcome survey. J Med Genet. 2009;46(8):548–552. doi: 10.1136/jmg.2008.065904.
    1. Hughes DA, Elliott PM, Shah J, Zuckerman J, Coghlan G, Brookes J, Mehta AB. Effects of enzyme replacement therapy on the cardiomyopathy of anderson-fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart. 2008;94(2):153–158. doi: 10.1136/hrt.2006.104026.
    1. Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, Leed PJ, Elliott PM. Gadolinium enhanced cardiovascular magnetic resonance in anderson-fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151–2155. doi: 10.1016/j.ehj.2003.09.017.
    1. Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M. Natural history of fabry disease in females in the fabry outcome survey. J Med Genet. 2006;43(4):347–352. doi: 10.1136/jmg.2005.036327.
    1. Taciane A, Filippo V, V De Souza M, C Krug B, V D Schwartz I. Enzyme replacement therapy for fabry disease: a systematic review and meta-analysis. Genet Mol Biol. 2012;35(4(suppl)):947–954.
    1. Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M, Finkel R, Packman S, Bichet DG, Warnock DG, Desnick RJ, Fabry Disease Clinical Trial Study Group Agalsidase-beta therapy for advanced fabry disease: a randomized trial. Ann Intern Med. 2007;146:77–86. doi: 10.7326/0003-4819-146-2-200701160-00148.
    1. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. doi: 10.1186/1532-429X-15-92.
    1. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, Mahmod M, Cochlin L, Karamitsos TD, Robson MD, Watkins H, Neubauer S. Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(6):726–733. doi: 10.1161/CIRCIMAGING.112.976738.
    1. Sado DM, Maestrini V, Piechnik SK, Banypersad SM, White SK, Flett AS, Robson MD, Neubauer S, Ariti C, Arai A, Kellman P, Yamamura J, Schoennagel BP, Shah F, Davis B, Trompeter S, Walker M, Porter J, Moon JC. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload.J Magn Reson Imaging. 2014; doi: 10.1002/jmri.24727.
    1. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging. 2013;6(10):1048–1058. doi: 10.1016/j.jcmg.2013.03.008.
    1. Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, Oudit GY. T1mapping with cardiovascular MRI is highly sensitive for fabry disease independent of hypertrophy and sex.Circ Cardiovasc Imaging. 2013; 6:637–45.
    1. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC. Identification and assessment of anderson fabry disease by cardiovascular magnetic resonance non-contrast myocardial T1 mapping. Circ Cardiovascular Imaging. 2013;6(3):392–398. doi: 10.1161/CIRCIMAGING.112.000070.
    1. Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2006;8(3):417–426. doi: 10.1080/10976640600572889.
    1. Kellman P, Herzka DA, Arai AE, Michael Schacht H. Influence of Off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson. 2013;15:63. doi: 10.1186/1532-429X-15-63.
    1. Lee JJ, Liu S, Nacif MS, Ugander M, Han J, Kawel N, Sibley CT, Kellman P, Arai AE, Bluemke DA. Myocardial T1 and extracellular volume fraction mapping at 3 Tesla. J Cardiovasc Magn Reson. 2011;28:13–75.
    1. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–146. doi: 10.1002/mrm.20110.
    1. Romhilt DW, Bove KE, Norris RJ, Conyers E, Conradi S, Rowlands DT, Scott RC. A critical appraisal of the electrocardiographic criteria for the diagnosis of left ventricular hypertrophy. Circulation. 1969;40:185–196. doi: 10.1161/01.CIR.40.2.185.
    1. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain–a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am SocEchocardiogr. 2004;10:1021–1029. doi: 10.1016/j.echo.2004.06.019.
    1. Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, Hofman MB, Sado DM, Maestrini V, White SK, Merzaka L, Theodoros K, Moon JC, Stefan N, Paul L, Robson MD. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson. 2013;15(1):13. doi: 10.1186/1532-429X-15-13.
    1. Kellman P, S Hansen M. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;4(16(1)):2. doi: 10.1186/1532-429X-16-2.
    1. Weidemann F, Niemann M, Breunig F, Hermann S, Beer M, Stork S, Voelker W, Ertl G, Ertl G, Wanner C, Strotmann J. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524–529. doi: 10.1161/CIRCULATIONAHA.108.794529.
    1. Fontana M, White SK, Banypersad SM, Sado DM, Viviana M, Flett AS, Piechnik SK, Stefan N, Neil R, Moon JC. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88. doi: 10.1186/1532-429X-14-88.
    1. Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;4:140296.
    1. Weidemann F, Breunig F, Beer M, Sandstede J, Turschner O, Voelker W, Ertl G, Knoll A, Wanner C, Strotmann JM. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain-rate imaging study. Circulation. 2003;108:1299–1301. doi: 10.1161/01.CIR.0000091253.71282.04.
    1. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S. Global and regional myocardial function quantification by Two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47(6):1175–1181. doi: 10.1016/j.jacc.2005.10.061.
    1. Fontana A, Zambon A, Cesana F, Giannattasio C, Trocino G. Tissue doppler, Triplane echocardiography, and speckle tracking echocardiography: different ways of measuring longitudinal myocardial velocity and deformation parameters. A comparative clinical study. Echocardiography. 2012;29:428–437. doi: 10.1111/j.1540-8175.2011.01618.x.
    1. Shanks M, B Thompson R, D Paterson I, Putko B, Khan A, Chan A, Becher H, Oudit GY. Systolic and diastolic function assessment in fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocardiography. 2013;26:1407–14. doi: 10.1016/j.echo.2013.09.005.
    1. Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences.Magn Reson Med. 2013; 70:664–70.

Source: PubMed

3
購読する