A neuroanatomical framework for upper limb synergies after stroke

Angus J C McMorland, Keith D Runnalls, Winston D Byblow, Angus J C McMorland, Keith D Runnalls, Winston D Byblow

Abstract

Muscle synergies describe common patterns of co- or reciprocal activation that occur during movement. After stroke, these synergies change, often in stereotypical ways. The mechanism underlying this change reflects damage to key motor pathways as a result of the stroke lesion, and the subsequent reorganization along the neuroaxis, which may be further detrimental or restorative to motor function. The time course of abnormal synergy formation seems to lag spontaneous recovery that occurs in the initial weeks after stroke. In healthy individuals, motor cortical activity, descending via the corticospinal tract (CST) is the predominant driver of voluntary behavior. When the CST is damaged after stroke, other descending pathways may be up-regulated to compensate. The contribution of these pathways may emerge as new synergies take shape at the chronic stage after stroke, as a result of plasticity along the neuroaxis. The location of the stroke lesion and properties of the secondary descending pathways and their regulation are then critical for shaping the synergies in the remaining motor behavior. A consideration of the integrity of remaining descending motor pathways may aid in the design of new rehabilitation therapies.

Keywords: corticospinal tract; muscle synergy; proximal–distal patterning; stroke; upper limb.

Figures

Figure 1
Figure 1
A schematic of descending pathways involved in the formation of synergies in healthy motor behavior, and their disruption after stroke. Direct CST connections exist from the cortex to motor neuron pools predominantly for distal muscles, green pathways from C1 to C5. Other CST connections, dark gray pathways from C2 and C3, carry low-dimensional motor commands and innervate synergy-forming spinal modules S1 and S2, which in turn have divergent connections to multiple motor neuron pools at several rostrocaudal levels. Red lines from C4 represent a cortically derived synergy controlling the three proximal motor neuron pools. Connections from C4 and C5 normally inhibit the contralateral motor cortex. Among other functions, this transcallosal input regulates alternate descending pathways like the CRPP (blue lines), which innervates propriospinal neurons linking multiple proximal limb segments. Dark red and wavy horizontal lines indicate sites of damage caused by three stroke lesions. Lesion 1 disrupts low-dimensional information from C3 to the synergy module at S1, and therefore would interfere with activation of the whole synergy mediated by S1, while leaving the synergy structure intact. Lesion 2 represents a mild event, transecting part of the cortically derived synergy from C4, which would alter its structure. Lesion 2 also damages transcallosal connections to the contralesional hemisphere, reducing interhemispheric inhibition and up-regulating the CRPP and other alternate, ipsilateral descending pathways. Since the lesion only affects a small number of CST fibers, remaining descending connections will subsume the damaged functions, and prognosis is good. The up-regulated CRPP interferes with productive CST drive. Suppression of the contralesional hemisphere by non-invasive brain stimulation, for example, c-tDCS, may reduce CRPP activity and thus be beneficial. Lesion 3 is larger than lesion 2, resulting in a severe impairment. Here, the CRPP represents the majority of remaining drive, meaning that c-tDCS of the contralesional hemisphere could be disadvantageous [c.f., Bradnam et al. (2012)].

References

    1. Beer R. F., Dewald J. P., Rymer W. Z. (2000). Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp. Brain Res. 131, 305–319.10.1007/s002219900275
    1. Bizzi E., Cheung V. C. K., d’Avella A., Saltiel P., Tresch M. (2008). Combining modules for movement. Brain Res. Rev. 57, 125–13310.1016/j.brainresrev.2007.08.004
    1. Bradnam L. V., Stinear C. M., Barber P. A., Byblow W. D. (2012). Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb. Cortex 22, 2662–2671.10.1093/cercor/bhr344
    1. Bradnam L. V., Stinear C. M., Byblow W. D. (2013). Ipsilateral motor pathways after stroke: implications for non-invasive brain stimulation. Front. Hum. Neurosci. 7:184.10.3389/fnhum.2013.00184
    1. Brunnström S. (1970). Movement Therapy in Hemiplegia: A Neurophysiological Approach, 1st Edn Hagerstown, MD: Harper & Row.
    1. Byrnes M. L., Thickbroom G. W., Phillips B. A., Mastaglia F. L. (2001). Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res. 889, 278–287.10.1016/S0006-8993(00)03089-4
    1. Capaday C., Ethier C., Van Vreeswijk C., Darling W. G. (2013). On the functional organization and operational principles of the motor cortex. Front. Neural Circuits 7:66.10.3389/fncir.2013.00066
    1. Cheung V. C. K., Piron L., Agostini M., Silvoni S., Turolla A., Bizzi E. (2009). Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. U.S.A. 106, 19563–19568.10.1073/pnas.0910114106
    1. Cheung V. C. K., Turolla A. A., Agostini M. M., Silvoni S. S., Bennis C. C., Kasi P. P., et al. (2012). Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. U.S.A. 109, 14652–14656.10.1073/pnas.1212056109
    1. d’Avella A., Portone A., Fernandez L., Lacquaniti F. (2006). Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26, 7791–7810.10.1523/JNEUROSCI.0830-06.2006
    1. Devanne H., Cassim F., Ethier C., Brizzi L., Thevenon A., Capaday C. (2006). The comparable size and overlapping nature of upper limb distal and proximal muscle representations in the human motor cortex. Eur. J. Neurosci. 23, 2467–2476.10.1111/j.1460-9568.2006.04760.x
    1. Dewald J. P. A., Pope P. S., Given J. D., Buchanan T. S., Rymer W. Z. (1995). Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118, 495–510.10.1093/brain/118.2.495
    1. García-Cossio E., Broetz D., Birbaumer N., Ramos-Murguialday A. (2014). Cortex integrity relevance in muscle synergies in severe chronic stroke. Front. Hum. Neurosci. 8:744.10.3389/fnhum.2014.00744
    1. Gerachshenko T., Rymer W. Z., Stinear J. W. (2008). Abnormal corticomotor excitability assessed in biceps brachii preceding pronator contraction post-stroke. Clin. Neurophysiol. 119, 683–692.10.1016/j.clinph.2007.11.004
    1. Gerachshenko T., Stinear J. W. (2007). Suppression of motor evoked potentials in biceps brachii preceding pronator contraction. Exp. Brain Res. 183, 531–539.10.1007/s00221-007-1071-4
    1. Holdefer R. N., Miller L. E. (2002). Primary motor cortical neurons encode functional muscle synergies. Exp. Brain Res. 146, 233–243.10.1007/s00221-002-1166-x
    1. Holodny A. I., Gor D. M., Watts R., Gutin P. H., Ulug A. M. (2005). Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology 234, 649–653.10.1148/radiol.2343032087
    1. Huntley G. W., Jones E. G. (1991). Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J. Neurophysiol. 66, 390–413.
    1. Kelso J. S., Southard D. L., Goodman D. (1979). On the coordination of two-handed movements. J. Exp. Psychol. Hum. Percept. Perform. 5, 229.10.1037/0096-1523.5.2.229
    1. Kwakkel G., Kollen B., Lindeman E. (2004). Understanding the pattern of functional recovery after stroke: facts and theories. Restor. Neurol. Neurosci. 22, 281–299.
    1. Lemon R. N. (2008). Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–21810.1146/annurev.neuro.31.060407.125547
    1. Levin M. F. (1996). Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119, 281–293.10.1093/brain/119.1.281
    1. Liew S.-L., Santarnecchi E., Buch E. R., Cohen L. G. (2014). Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8:1–15.10.3389/fnhum.2014.00378
    1. McCambridge A. B., Bradnam L. V., Stinear C. M., Byblow W. D. (2011). Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm. J. Neurophysiol. 105, 2937–2942.10.1152/jn.00171.2011
    1. Murase N., Duque J., Mazzocchio R., Cohen L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409.10.1002/ana.10848
    1. Nudo R. J., Milliken G. W., Jenkins W. M., Merzenich M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807.
    1. Overduin S. A., d’Avella A., Carmena J. M., Bizzi E. (2012). Microstimulation activates a handful of muscle synergies. Neuron 76, 1071–1077.10.1016/j.neuron.2012.10.018
    1. Penfield W. (1954). Mechanisms of voluntary movement. Brain 77, 1–1710.1093/brain/77.1.1
    1. Prabhakaran S., Zarahn E., Riley C., Speizer A., Chong J. Y., Lazar R. M., et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil. Neural Repair 22, 64–71.10.1177/1545968307305302
    1. Rathelot J.-A., Strick P. L. (2006). Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl. Acad. Sci. U.S.A. 103, 8257–8262.10.1073/pnas.0602933103
    1. Reisman D. S., Scholz J. P. (2003). Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126, 2510–2527.10.1093/brain/awg246
    1. Roh J., Rymer W. Z., Perreault E. J., Yoo S. B., Beer R. F. (2013). Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109, 768–781.10.1152/jn.00670.2012
    1. Sabatini A. M. (2002). Identification of neuromuscular synergies in natural upper-arm movements. Biol. Cybern. 86, 253–262.10.1007/s00422-001-0297-7
    1. Schieber M. H., Hibbard L. S. (1993). How somatotopic is the motor cortex hand area? Science 261, 489–492.10.1126/science.8332915
    1. Schwerin S., Dewald J. P. A., Haztl M., Jovanovich S., Nickeas M., MacKinnon C. (2008). Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies. Exp. Brain Res. 185, 509–519.10.1007/s00221-007-1169-8
    1. Steele K. M., Tresch M. C., Perreault E. J. (2013). The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci. 7:1–9.10.3389/fncom.2013.00105
    1. Stinear C. M. (2010). Prediction of recovery of motor function after stroke. Lancet Neurol. 9, 1228–1232.10.1016/S1474-4422(10)70247-7
    1. Stinear C. M., Barber P. A., Petoe M., Anwar S., Byblow W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 135, 2527–2535.10.1093/brain/aws146
    1. Stinear C. M., Barber P. A., Smale P. R., Coxon J. P., Fleming M. K., Byblow W. D. (2007). Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(Pt 1), 170–18010.1093/brain/awl333
    1. Tresch M. C., Bizzi E. (1999). Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp. Brain Res. 129, 401–416.10.1007/s002210050908
    1. Tresch M. C., Cheung V. C. K., d’Avella A. (2006). Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. 95, 2199–2212.10.1152/jn.00222.2005
    1. Tropea P., Monaco V., Coscia M., Posteraro F., Micera S. (2013). Effects of early and intensive neuro-rehabilitative treatment on muscle synergies in acute post-stroke patients: a pilot study. J. Neuroeng. Rehabil. 10, 103.10.1186/1743-0003-10-103
    1. Twitchell T. E. (1951). The restoration of motor function following hemiplegia in man. Brain 74, 443–48010.1093/brain/74.4.443
    1. Veerbeek J. M., Kwakkel G., van Wegen E. E. H., Ket J. C. F., Heymans M. W. (2011). Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke 42, 1482–1488.10.1161/STROKEAHA.110.604090
    1. Weiss E. J., Flanders M. (2004). Muscular and postural synergies of the human hand. J. Neurophysiol. 92, 523–535.10.1152/jn.01265.2003
    1. Wickens J., Hyland B., Anson J. G. (1994). Cortical cell assemblies: a possible mechanism for motor programs. J. Mot. Behav. 26, 66–82.10.1080/00222895.1994.9941663
    1. Wolfe C. D. (2000). The impact of stroke. Br. Med. Bull. 56, 275–28610.1258/0007142001903120
    1. Zarahn E., Alon L., Ryan S. L., Lazar R. M., Vry M. S., Weiller C., et al. (2011). Prediction of motor recovery using initial impairment and fMRI 48 h post stroke. Cereb. Cortex 21, 2712–2721.10.1093/cercor/bhr047

Source: PubMed

3
購読する