Fructose Metabolism and Relation to Atherosclerosis, Type 2 Diabetes, and Obesity

Astrid Kolderup, Birger Svihus, Astrid Kolderup, Birger Svihus

Abstract

A high intake of sugars has been linked to diet-induced health problems. The fructose content in sugars consumed may also affect health, although the extent to which fructose has a particularly significant negative impact on health remains controversial. The aim of this narrative review is to describe the body's fructose management and to discuss the role of fructose as a risk factor for atherosclerosis, type 2 diabetes, and obesity. Despite some positive effects of fructose, such as high relative sweetness, high thermogenic effect, and low glycaemic index, a high intake of fructose, particularly when combined with glucose, can, to a larger extent than a similar glucose intake, lead to metabolic changes in the liver. Increased de novo lipogenesis (DNL), and thus altered blood lipid profile, seems to be the most prominent change. More studies with realistic consumption levels of fructose are needed, but current literature does not indicate that a normal consumption of fructose (approximately 50-60 g/day) increases the risk of atherosclerosis, type 2 diabetes, or obesity more than consumption of other sugars. However, a high intake of fructose, particularly if combined with a high energy intake in the form of glucose/starch, may have negative health effects via DNL.

References

    1. Cohen A. M., Teitelbaum A., Balogh M., Groen J. J. Effect of interchanging bread and sucrose as main source of carbohydrate in a low fat diet on the glucose tolerance curve of healthy volunteer subjects. The American Journal of Clinical Nutrition. 1966;19(1):59–62.
    1. Storlien L. H., Kraegen E. W., Jenkins A. B., Chisholm D. J. Effects of sucrose vs starch diets on in vivo insulin action, thermogenesis, and obesity in rats. The American Journal of Clinical Nutrition. 1988;47(3):420–427.
    1. Giaccari A., Sorice G., Muscogiuri G. Glucose toxicity: the leading actor in the pathogenesis and clinical history of type 2 diabetes—mechanisms and potentials for treatment. Nutrition, Metabolism and Cardiovascular Diseases. 2009;19(5):365–377. doi: 10.1016/j.numecd.2009.03.018.
    1. Laughlin M. R. Normal roles for dietary fructose in carbohydrate metabolism. Nutrients. 2014;6(8):3117–3129. doi: 10.3390/nu6083117.
    1. Malik V. S., Popkin B. M., Bray G. A., Després J.-P., Willett W. C., Hu F. B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33(11):2477–2483. doi: 10.2337/dc10-1079.
    1. Dhingra R., Sullivan L., Jacques P. F., et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116(5):480–488.
    1. Høstmark A. T. The Oslo Health Study: soft drink intake is associated with the metabolic syndrome. Applied Physiology, Nutrition and Metabolism. 2010;35(5):635–642. doi: 10.1139/h10-059.
    1. Lustig R. H. Fructose: metabolic, hedonic, and societal parallels with ethanol. Journal of the American Dietetic Association. 2010;110(9):1307–1321. doi: 10.1016/j.jada.2010.06.008.
    1. Havel P. J. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition Reviews. 2005;63(5):133–137. doi: 10.1301/nr.2005.may.133-157.
    1. Segal M. S., Gollub E., Johnson R. J. Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? European Journal of Nutrition. 2007;46(7):406–417. doi: 10.1007/s00394-007-0680-9.
    1. Sánchez-Lozada L. G., Le M., Segal M., Johnson R. J. How safe is fructose for persons with or without diabetes? The American Journal of Clinical Nutrition. 2008;88(5):1189–1190. doi: 10.3945/ajcn.2008.26812.
    1. White J. S. Challenging the fructose hypothesis: new perspectives on fructose consumption and metabolism. Advances in Nutrition. 2013;4(2):246–256. doi: 10.3945/an.112.003137.
    1. Marriott B. P., Cole N., Lee E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. The Journal of Nutrition. 2009;139(6):S1228–S1235. doi: 10.3945/jn.108.098277.
    1. Helsedirektoratet. Utviklingen i norsk kosthold. Matforsyningsstatistikk. 2013, (Norwegian), .
    1. United States Department of Argiculture. National Nutrient Database for Standard Reference. United States Department of Argiculture; 2012.
    1. White J. S. Straight talk about high-fructose corn syrup: what it is and what it ain't. The American Journal of Clinical Nutrition. 2008;88(6):1716S–1721S. doi: 10.3945/ajcn.2008.25825b.
    1. Ferder L., Ferder M. D., Inserra F. The role of high-fructose corn syrup in metabolic syndrome and hypertension. Current Hypertension Reports. 2010;12(2):105–112. doi: 10.1007/s11906-010-0097-3.
    1. Tappy L., Le K.-A. Metabolic effects of fructose and the worldwide increase in obesity. Physiological Reviews. 2010;90(1):23–46. doi: 10.1152/physrev.00019.2009.
    1. Madero M., Perez-Pozo S. E., Jalal D., Johnson R. J., Sánchez-Lozada L. G. Dietary fructose and hypertension. Current Hypertension Reports. 2011;13(1):29–35. doi: 10.1007/s11906-010-0163-x.
    1. Jones H. F., Butler R. N., Brooks D. A. Intestinal fructose transport and malabsorption in humans. The American Journal of Physiology—Gastrointestinal and Liver Physiology. 2011;300(2):G202–G206. doi: 10.1152/ajpgi.00457.2010.
    1. Truswell A. S., Seach J. M., Thorburn A. W. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. The American Journal of Clinical Nutrition. 1988;48(6):1424–1430.
    1. Riby J. E., Fujisawa T., Kretchmer N. Fructose absorption. American Journal of Clinical Nutrition. 1993;58(5):S748–S753.
    1. Corpe C. P., Burant C. F., Hoekstra J. H. Intestinal fructose absorption: clinical and molecular aspects. Journal of Pediatric Gastroenterology and Nutrition. 1999;28(4):364–374. doi: 10.1097/00005176-199904000-00004.
    1. Beyer P. L., Caviar E. M., McCallum R. W. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults. Journal of the American Dietetic Association. 2005;105(10):1559–1566. doi: 10.1016/j.jada.2005.07.002.
    1. Pimentel M., Lin H. C., Enayati P., et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2006;290(6):G1089–G1095. doi: 10.1152/ajpgi.00574.2004.
    1. Wong J. M. W., de Souza R., Kendall C. W. C., Emam A., Jenkins D. J. A. Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology. 2006;40(3):235–243. doi: 10.1097/00004836-200603000-00015.
    1. Gibson P. R., Newnham E., Barrett J. S., Shepherd S. J., Muir J. G. Review article: fructose malabsorption and the bigger picture. Alimentary Pharmacology & Therapeutics. 2007;25(4):349–363. doi: 10.1111/j.1365-2036.2006.03186.x.
    1. Madsen J. L., Linnet J., Rumessen J. J. Effect of nonabsorbed amounts of a fructose-sorbitol mixture on small intestinal transit in healthy volunteers. Digestive Diseases and Sciences. 2006;51(1):147–153. doi: 10.1007/s10620-006-3100-8.
    1. Dyer J., Wood I. S., Palejwala A., Ellis A., Shirazi-Beechey S. P. Expression of monosaccharide transporters in intestine of diabetic humans. American Journal of Physiology: Gastrointestinal and Liver Physiology. 2002;282(2):G241–G248. doi: 10.1152/ajpgi.00310.2001.
    1. Kellett G. L., Brot-Laroche E. Apical GLUT2—a major pathway of intestinal sugar absorption. Diabetes. 2005;54(10):3056–3062. doi: 10.2337/diabetes.54.10.3056.
    1. Kneepkens C. M. F., Vonk R. J., Fernandes J. Incomplete intestinal absorption of fructose. Archives of Disease in Childhood. 1984;59(8):735–738. doi: 10.1136/adc.59.8.735.
    1. Douard V., Ferraris R. P. Regulation of the fructose transporter GLUT5 in health and disease. American Journal of Physiology—Endocrinology and Metabolism. 2008;295(2):E227–E237. doi: 10.1152/ajpendo.90245.2008.
    1. Bray G. A. How bad is fructose? The American Journal of Clinical Nutrition. 2007;86(4):895–896.
    1. Bjorkman O., Crump M., Phillips R. W. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. The Journal of Nutrition. 1984;114(8):1413–1420.
    1. Bjorkman O., Felig P. Role of the kidney in the metabolism of fructose in 60-hour fasted humans. Diabetes. 1982;31(6):516–520. doi: 10.2337/diab.31.6.516.
    1. Litherland G. J., Hajduch E., Gould G. W., Hundal H. S. Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. Molecular and Cellular Biochemistry. 2004;261(1):23–33. doi: 10.1023/b:mcbi.0000028734.77867.d2.
    1. Lam P., Ng K., Stanhope K. L., et al. Effects of consuming dietary fructose versus glucose on de novo lipogenesis in overweight and obese human subjects. Berkeley Scientific Journal. 2011;15(2)
    1. Tappy L., Lê K.-A. Does fructose consumption contribute to non-alcoholic fatty liver disease? Clinics and Research in Hepatology and Gastroenterology. 2012;36(6):554–560. doi: 10.1016/j.clinre.2012.06.005.
    1. Stanhope K. L. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annual Review of Medicine. 2012;63:329–343. doi: 10.1146/annurev-med-042010-113026.
    1. Samuel V. T. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends in Endocrinology and Metabolism. 2011;22(2):60–65.
    1. Mayes P. A. Intermediary metabolism of fructose. American Journal of Clinical Nutrition. 1993;58(5):S754–S765.
    1. Delarue J., Normand S., Pachiaudi C., Beylot M., Lamisse F., Riou J. P. The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia. 1993;36(4):338–345. doi: 10.1007/BF00400238.
    1. Sun S. Z., Empie M. W. Fructose metabolism in humans—what isotopic tracer studies tell us. Nutrition& Metabolism. 2012;9, article 89 doi: 10.1186/1743-7075-9-89.
    1. Smith L. H., Jr., Ettinger R. H., Seligson D. A comparison of the metabolism of fructose and glucose in hepatic. The Journal of Clinical Investigation. 1953;32(4):273–282. doi: 10.1172/jci102736.
    1. Sahebjami H., Scalettar R. Effects of fructose infusion on lactate and uric acid metabolism. The Lancet. 1971;297(7695):366–369.
    1. Schwarz J.-M., Schutz Y., Froidevaux F., et al. Thermogenesis in men and women induced by fructose vs glucose added to a meal. American Journal of Clinical Nutrition. 1989;49(4):667–674.
    1. Couchepin C., Kim-Anne L. Ê., Bortolotti M., et al. Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects. Diabetes Care. 2008;31(6):1254–1256. doi: 10.2337/dc07-2001.
    1. Lecoultre V., Benoit R., Carrel G., et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. The American Journal of Clinical Nutrition. 2010;92(5):1071–1079. doi: 10.3945/ajcn.2010.29566.
    1. Kelsay J. L., Behall K. M., Clark W. M. Glucose, fructose, lactate and pyruvate in blood, and lactate and pyruvate in parotid saliva in response to sugars with and without other foods. American Journal of Clinical Nutrition. 1974;27(8):819–825.
    1. Theytaz F., de Giorgi S., Hodson L., et al. Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients. 2014;6(7):2632–2649. doi: 10.3390/nu6072632.
    1. Teff K. L., Elliott S. S., Tschöp M., et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2963–2972. doi: 10.1210/jc.2003-031855.
    1. Girard J. The inhibitory effects of insulin on hepatic glucose production are both direct and indirect. Diabetes. 2006;55(2):S65–S69. doi: 10.2337/db06-S009.
    1. Boden G., Salehi S., Cheung P., et al. Comparison of in vivo effects of insulin on SREBP-1c activation and INSIG-1/2 in rat liver and human and rat adipose tissue. Obesity. 2013;21(6):1208–1214. doi: 10.1002/oby.20134.
    1. Hellerstein M. K., Schwarz J.-M., Neese R. A. Regulation of hepatic de novo lipogenesis in humans. Annual Review of Nutrition. 1996;16:523–557. doi: 10.1146/annurev.nu.16.070196.002515.
    1. Shrago E., Glennon J. A., Gordon E. S. Comparative aspects of lipogenesis in mammalian tissues. Metabolism: Clinical and Experimental. 1971;20(1):54–62. doi: 10.1016/0026-0495(71)90059-x.
    1. Guo Z. K., Cella L. K., Baum C., Ravussin E., Schoeller D. A. De nova lipognesis in adipose tissue of lean and obese women: application of deuterated water and isotope ratio mass spectrometry. International Journal of Obesity. 2000;24(7):932–937. doi: 10.1038/sj.ijo.0801256.
    1. Diraison F., Yankah V., Letexier D., Dusserre E., Jones P., Beylot M. Differences in the regulation of adipose tissue and liver lipogenesis by carbohydrates in humans. Journal of Lipid Research. 2003;44(4):846–853. doi: 10.1194/jlr.m200461-jlr200.
    1. Strawford A., Antelo F., Christiansen M., Hellerstein M. K. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. American Journal of Physiology—Endocrinology & Metabolism. 2004;286(4):E577–E588. doi: 10.1152/ajpendo.00093.2003.
    1. Chascione C., Elwyn D. H., Davila M., Gil K. M., Askanazi J., Kinney J. M. Effect of carbohydrate intake on de novo lipogenesis in human adipose tissue. American Journal of Physiology: Endocrinology and Metabolism. 1987;253(6):E664–E669.
    1. Aarsland A., Chinkes D., Wolfe R. R. Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. The American Journal of Clinical Nutrition. 1997;65(6):1774–1782.
    1. Stubbs R. J., Mazlan N., Whybrow S. Carbohydrates, appetite and feeding behavior in humans. The Journal of Nutrition. 2001;131(10):2775S–2781S.
    1. Acheson K. J., Schutz Y., Bessard T., Anantharaman K., Flatt J.-P., Jequier E. Glycoprotein storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. American Journal of Clinical Nutrition. 1988;48(2):240–247.
    1. Parks E. J., Skokan L. E., Timlin M. T., Dingfelder C. S. Dietary sugars stimulate fatty acid synthesis in adults. Journal of Nutrition. 2008;138(6):1039–1046.
    1. Park O.-J., Cesar D., Faix D., Wu K., Shackleton C. H. L., Hellerstein M. K. Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase. Biochemical Journal. 1992;282(3):753–757.
    1. Stanhope K. L., Schwarz J. M., Keim N. L., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of Clinical Investigation. 2009;119(5):1322–1334. doi: 10.1172/jci37385.
    1. Crescenzo R., Bianco F., Falcone I., Coppola P., Liverini G., Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. European Journal of Nutrition. 2013;52(2):537–545. doi: 10.1007/s00394-012-0356-y.
    1. Carden T. J., Carr T. P. Food availability of glucose and fat, but not fructose, increased in the US between 1970 and 2009: analysis of the USDA food availability data system. Nutrition Journal. 2013;12, article 130 doi: 10.1186/1475-2891-12-130.
    1. Hirahatake K. M., Meissen J. K., Fiehn O., Adams S. H. Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells. PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0026583.e26583
    1. Dushay J. R., Toschi E., Mitten E. K., Fisher F. M., Herman M. A., Maratos-Flier E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Molecular Metabolism. 2014;4(1):51–57. doi: 10.1016/j.molmet.2014.09.008.
    1. Bobbert T., Schwarz F., Fischer-Rosinsky A., et al. Fibroblast growth factor 21 predicts the metabolic syndrome and type 2 diabetes in Caucasians. Diabetes Care. 2013;36(1):145–149. doi: 10.2337/dc12-0703.
    1. Faeh D., Minehira K., Schwarz J.-M., Periasami R., Seongsu P., Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005;54(7):1907–1913. doi: 10.2337/diabetes.54.7.1907.
    1. Ha V., Sievenpiper J. L., De Souza R. J., et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension. 2012;59(4):787–795. doi: 10.1161/hypertensionaha.111.182311.
    1. Chong M. F.-F., Fielding B. A., Frayn K. N. Mechanisms for the acute effect of fructose on postprandial lipemia. The American Journal of Clinical Nutrition. 2007;85(6):1511–1520.
    1. Vedala A., Wang W., Neese R. A., Christiansen M. P., Hellerstein M. K. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. Journal of Lipid Research. 2006;47(11):2562–2574. doi: 10.1194/jlr.m600200-jlr200.
    1. Stanhope K. L., Havel P. J. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Current Opinion in Lipidology. 2008;19(1):16–24. doi: 10.1097/mol.0b013e3282f2b24a.
    1. Marques-Lopes I., Ansorena D., Astiasaran I., Forga L., Martínez J. A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. The American Journal of Clinical Nutrition. 2001;73(2):253–261.
    1. Horton J. D., Goldstein J. L., Brown M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation. 2002;109(9):1125–1131. doi: 10.1172/jci200215593.
    1. Tran C., Jacot-Descombes D., Lecoultre V., et al. Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. British Journal of Nutrition. 2010;104(8):1139–1147. doi: 10.1017/S000711451000190X.
    1. Hudgins L. C., Hellerstein M. K., Seidman C. E., Neese R. A., Tremaroli J. D., Hirsch J. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. Journal of Lipid Research. 2000;41(4):595–604.
    1. Timlin M. T., Parks E. J. Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. American Journal of Clinical Nutrition. 2005;81(1):35–42.
    1. Le K.-A., Ith M., Kreis R., et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. The American Journal of Clinical Nutrition. 2009;89(6):1760–1765. doi: 10.3945/ajcn.2008.27336.
    1. Allen R. J. L., Leahy J. S. Some effects of dietary dextrose, fructose, liquid glucose and sucrose in the adult male rat. British Journal of Nutrition. 1966;20(2):339–347. doi: 10.1079/bjn19660034.
    1. Bergheim I., Weber S., Vos M., et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. Journal of Hepatology. 2008;48(6):983–992.
    1. Lê K.-A., Faeh D., Stettler R., et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. American Journal of Clinical Nutrition. 2006;84(6):1374–1379.
    1. Silbernagel G., MacHann J., Unmuth S., et al. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. British Journal of Nutrition. 2011;106(1):79–86. doi: 10.1017/s000711451000574x.
    1. Sievenpiper J. L., de Souza R. J., Cozma A. I., Chiavaroli L., Ha V., Mirrahimi A. Fructose vs. glucose and metabolism: do the metabolic differences matter? Current Opinion in Lipidology. 2014;25(1):8–19. doi: 10.1097/mol.0000000000000042.
    1. Chiu S., Sievenpiper J. L., de Souza R. J., et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. European Journal of Clinical Nutrition. 2014;68(4):416–423. doi: 10.1038/ejcn.2014.8.
    1. Bravo S., Lowndes J., Sinnett S., Yu Z., Rippe J. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles. Applied Physiology, Nutrition and Metabolism. 2013;38(6):681–688. doi: 10.1139/apnm-2012-0322.
    1. Rippe J. M., Angelopoulos T. J. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know? Advances in Nutrition. 2013;4(2):236–245. doi: 10.3945/an.112.002824.
    1. Maersk M., Belza A., Stødkilde-Jørgensen H., et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. The American Journal of Clinical Nutrition. 2012;95(2):283–289. doi: 10.3945/ajcn.111.022533.
    1. Johnston R. D., Stephenson M. C., Crossland H., et al. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology. 2013;145(5):1016–1025. doi: 10.1053/j.gastro.2013.07.012.
    1. Page K. A., Chan O., Arora J., et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. The Journal of the American Medical Association. 2013;309(1):63–70. doi: 10.1001/jama.2012.116975.
    1. Moore J. B., Gunn P. J., Fielding B. A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients. 2014;6(12):5679–5703. doi: 10.3390/nu6125679.
    1. Rizkalla S. W. Health implications of fructose consumption: a review of recent data. Nutrition & Metabolism. 2010;7, article 82 doi: 10.1186/1743-7075-7-82.
    1. Aarsland A., Wolfe R. R. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. Journal of Lipid Research. 1998;39(6):1280–1286.
    1. Connor W. E. Harbingers of coronary heart disease: dietary saturated fatty acids and cholesterol. Is chocolate benign because of its stearic acid content? The American Journal of Clinical Nutrition. 1999;70(6):951–952.
    1. Cohen J. C., Schall R. Reassessing the effects of simple carbohydrates on the serum triglyceride responses to fat meals. American Journal of Clinical Nutrition. 1988;48(4):1031–1034.
    1. Teff K. L., Grudziak J., Townsend R. R., et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. The Journal of Clinical Endocrinology & Metabolism. 2009;94(5):1562–1569. doi: 10.1210/jc.2008-2192.
    1. Hallfrisch J., Reiser S., Prather E. S. Blood lipid distribution of hyperinsulinemic men consuming three levels of fructose. The American Journal of Clinical Nutrition. 1983;37(5):740–748.
    1. Reiser S., Powell A. S., Scholfield D. J., Panda P., Ellwood K. C., Canary J. J. Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. The American Journal of Clinical Nutrition. 1989;49(5):832–839.
    1. Bantle J. P., Swanson J. E., Thomas W., Laine D. C. Metabolic effects of dietary fructose in diabetic subjects. Diabetes Care. 1992;15(11):1468–1476. doi: 10.2337/diacare.15.11.1468.
    1. Swanson J. E., Laine D. C., Thomas W., Bantle J. P. Metabolic effects of dietary fructose in healthy subjects. American Journal of Clinical Nutrition. 1992;55(4):851–856.
    1. Stanhope K. L., Bremer A. A., Medici V., et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. Journal of Clinical Endocrinology and Metabolism. 2011;96(10):E1596–E1605. doi: 10.1210/jc.2011-1251.
    1. Aeberli I., Gerber P. A., Hochuli M., et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. The American Journal of Clinical Nutrition. 2011;94(2):479–485. doi: 10.3945/ajcn.111.013540.
    1. Diffenderfer M. R., Schaefer E. J. The composition and metabolism of large and small LDL. Current Opinion in Lipidology. 2014;25(3):221–226. doi: 10.1097/MOL.0000000000000067.
    1. Livesey G., Taylor R. Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. The American Journal of Clinical Nutrition. 2008;88(5):1419–1437. doi: 10.3945/ajcn.2007.25700.
    1. Swarbrick M. M., Stanhope K. L., Elliott S. S., et al. Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. British Journal of Nutrition. 2008;100(5):947–952. doi: 10.1017/S0007114508968252.
    1. David Wang D., Sievenpiper J. L., De Souza R. J., et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis. 2014;232(1):125–133. doi: 10.1016/j.atherosclerosis.2013.10.019.
    1. Aeberli I., Hochuli M., Gerber P. A., et al. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care. 2013;36(1):150–156. doi: 10.2337/dc12-0540.
    1. Lowndes J., Sinnett S., Pardo S., et al. The effect of normally consumed amounts of sucrose or high fructose corn syrup on lipid profiles, body composition and related parameters in overweight/obese subjects. Nutrients. 2014;6(3):1128–1144. doi: 10.3390/nu6031128.
    1. Rippe J. M. The metabolic and endocrine response and health implications of consuming sugar-sweetened beverages: findings from recent randomized controlled trials. Advances in Nutrition. 2013;4(6):677–686. doi: 10.3945/an.113.004580.
    1. Hashemi M., Yavari M., Amiri N., et al. Uric acid: a risk factor for coronary atherosclerosis? Cardiovascular Journal of South Africa. 2007;18(1):16–19.
    1. Rodrigues T. C., Maahs D. M., Johnson R. J., et al. Serum uric acid predicts progression of subclinical coronary atherosclerosis in individuals without renal disease. Diabetes Care. 2010;33(11):2471–2473. doi: 10.2337/dc10-1007.
    1. Feig D. I., Kang D.-H., Johnson R. J. Uric acid and cardiovascular risk. The New England Journal of Medicine. 2008;359(17):1811–1821. doi: 10.1056/nejmra0800885.
    1. Cox C. L., Stanhope K. L., Schwarz J. M., et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutrition & Metabolism. 2012;9, article 68 doi: 10.1186/1743-7075-9-68.
    1. Wang D. D., Sievenpiper J. L., de Souza R. J., et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. The Journal of Nutrition. 2012;142(5):916–923. doi: 10.3945/jn.111.151951.
    1. Perheentupa J., Raivio K. Fructose-induced hyperuricaemia. The Lancet. 1967;2(7515):528–531.
    1. Brown C. M., Dulloo A. G., Yepuri G., Montani J.-P. Fructose ingestion acutely elevates blood pressure in healthy young humans. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2008;294(3):R730–R737. doi: 10.1152/ajpregu.00680.2007.
    1. Perez-Pozo S. E., Schold J., Nakagawa T., Sánchez-Lozada L. G., Johnson R. J., Lillo J. L. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. International Journal of Obesity. 2010;34(3):454–461. doi: 10.1038/ijo.2009.259.
    1. Jayalath V. H., Sievenpiper J. L., de Souza R. J., et al. Total fructose intake and risk of hypertension: a systematic review and meta-analysis of prospective cohorts. Journal of the American College of Nutrition. 2014;33(4):328–339. doi: 10.1080/07315724.2014.916237.
    1. Ha V., Jayalath V. H., Cozma A. I., Mirrahimi A., de Souza R. J., Sievenpiper J. L. Fructose-containing sugars, blood pressure, and cardiometabolic risk: a critical review. Current Hypertension Reports. 2013;15(4):281–297. doi: 10.1007/s11906-013-0364-1.
    1. Wang M., Yu M., Fang L., Hu R. Association between sugar-sweetened beverages and type 2 diabetes: a meta-analysis. Journal of Diabetes Investigation. 2015;6(3):360–366. doi: 10.1111/jdi.12309.
    1. Kong M.-F., Chapman I., Goble E., et al. Effects of oral fructose and glucose on plasma GLP-1 and appetite in normal subjects. Peptides. 1999;20(5):545–551. doi: 10.1016/S0196-9781(99)00006-6.
    1. Grant A. M., Christie M. R., Ashcroft S. J. H. Insulin release from human pancreatic islets in vitro. Diabetologia. 1980;19(2):114–117. doi: 10.1007/bf00421856.
    1. Curry D. L. Effects of mannose and fructose on the synthesis and secretion of insulin. Pancreas. 1989;4(1):2–9. doi: 10.1097/00006676-198902000-00002.
    1. Cozma A. I., Sievenpiper J. L., de Souza R. J., et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care. 2012;35(7):1611–1620. doi: 10.2337/dc12-0073.
    1. Sievenpiper J. L., Chiavaroli L., De Souza R. J., et al. ‘Catalytic’ doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: A small meta-analysis of randomised controlled feeding trials. British Journal of Nutrition. 2012;108(3):418–423. doi: 10.1017/s000711451200013x.
    1. Hwang I. S., Ho H., Hoffman B. B., Reaven G. M. Fructose-induced insulin resistance and hypertension in rats. Hypertension. 1987;10(5):512–516. doi: 10.1161/01.hyp.10.5.512.
    1. Huang Y.-J., Fang V. S., Juan C.-C., Chou Y.-C., Kwok C.-F., Ho L.-T. Amelioration of insulin resistance and hypertension in a fructose-fed rat model with fish oil supplementation. Metabolism: Clinical and Experimental. 1997;46(11):1252–1258. doi: 10.1016/s0026-0495(97)90226-2.
    1. Crapo P. A., Kolterman O. G. The metabolic effects of 2-week fructose feeding in normal subjects. The American Journal of Clinical Nutrition. 1984;39(4):525–534.
    1. Grigoresco G., Rizkalla S. W., Halfon P., et al. Lack of detectable deleterious effects on metabolic control of daily fructose ingestion for 2-mo in NIDDM patients. Diabetes Care. 1988;11(7):546–550. doi: 10.2337/diacare.11.7.546.
    1. Sunehag A. L., Toffolo G., Treuth M. S., et al. Effects of dietary macronutrient content on glucose metabolism in children. Journal of Clinical Endocrinology & Metabolism. 2002;87(11):5168–5178. doi: 10.1210/jc.2002-020674.
    1. Feinman R. D., Fine E. J. Fructose in perspective. Nutrition & Metabolism. 2013;10(1, article 45) doi: 10.1186/1743-7075-10-45.
    1. Beck-Nielsen H., Pedersen O., Lindskov H. O. Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. The American Journal of Clinical Nutrition. 1980;33(2):273–278.
    1. Hallfrisch J., Ellwood K. C., Michaelis O. E., Reiser S., O'Dorisio T. M., Prather E. S. Effects of dietary fructose on plasma-glucose and hormone responses in normal and hyperinsulinemic men. The Journal of Nutrition. 1983;113(9):1819–1826.
    1. Eiffert K. C., McDonald R. B., Stern J. S. High sucrose diet and exercise: effects on insulin-receptor function of 12- and 24-mo-old Sprague-Dawley rats. Journal of Nutrition. 1991;121(7):1081–1089.
    1. Wei Y., Pagliassotti M. J. Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance. American Journal of Physiology—Endocrinology and Metabolism. 2004;287(5):E926–E933. doi: 10.1152/ajpendo.00185.2004.
    1. Nagai Y., Yonemitsu S., Erion D. M., et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 β in the pathogenesis of fructose-induced insulin resistance. Cell Metabolism. 2009;9(3):252–264. doi: 10.1016/j.cmet.2009.01.011.
    1. Delbosc S., Paizanis E., Magous R., et al. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis. 2005;179(1):43–49. doi: 10.1016/j.atherosclerosis.2004.10.018.
    1. Stanhope K. L., Griffen S. C., Bair B. R., Swarbrick M. M., Keim N. L., Havel P. J. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. The American Journal of Clinical Nutrition. 2008;87(5):1194–1203.
    1. Tran L. T., Yuen V. G., McNeill J. H. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Molecular and Cellular Biochemistry. 2009;332(1-2):145–159. doi: 10.1007/s11010-009-0184-4.
    1. Rodin J., Reed D., Jamner L. Metabolic effects of fructose and glucose: implications for food intake. American Journal of Clinical Nutrition. 1988;47(4):683–689.
    1. Rodin J. Comparative effects of fructose, aspartame, glucose, and water preloads on calorie and macronutrient intake. The American Journal of Clinical Nutrition. 1990;51(3):428–435.
    1. Spitzer L., Rodin J. Effects of fructose and glucose preloads on subsequent food-intake. Appetite. 1987;8(2):135–145. doi: 10.1016/s0195-6663(87)80006-5.
    1. Warwick Z. S., Weingarten H. P. Dynamics of intake suppression after a preload: role of calories, volume, and macronutrients. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 1994;266(4):R1314–R1318.
    1. Tappy L., Randin J.-P., Felber J.-P., et al. Comparison of thermogenic effect of fructose and glucose in normal humans. The American Journal of Physiology—Endocrinology and Metabolism. 1986;250(6):E718–E724.
    1. Simonson D. C., Tappy L., Jequier E., Felber J.-P., DeFronzo R. A. Normalization of carbohydrate-induced thermogenesis by fructose in insulin-resistant states. The American Journal of Physiology—Endocrinology and Metabolism. 1988;254(2):E201–E207.
    1. Schwarz J.-M., Acheson K. J., Tappy L., et al. Thermogenesis and fructose metabolism in humans. American Journal of Physiology: Endocrinology and Metabolism. 1992;262(5):E591–E598.
    1. Hugenholtz J. The lactic acid bacterium as a cell factory for food ingredient production. International Dairy Journal. 2008;18(5):466–475. doi: 10.1016/j.idairyj.2007.11.015.
    1. Gwak M.-J., Chung S.-J., Kim Y. J., Lim C. S. Relative sweetness and sensory characteristics of bulk and intense sweeteners. Food Science and Biotechnology. 2012;21(3):889–894. doi: 10.1007/s10068-012-0115-0.
    1. Shallenberger R. S. Intrinsic chemistry of fructose. Pure and Applied Chemistry. 1978;50(11-12):1409–1420. doi: 10.1351/pac197850111409.
    1. Wrolstad R. E. Food Carbohydrate Chemistry. 1st. New York, NY, USA: John Wiley & Sons; 2012.
    1. Blakely S. R., Hallfrisch J., Reiser S., Prather E. S. Long-term effects of moderate fructose feeding on glucose-tolerance parameters in rats. The Journal of Nutrition. 1981;111(2):307–314.
    1. Stanhope K. L., Havel P. J. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. The American Journal of Clinical Nutrition. 2008;88(6):1733S–1737S. doi: 10.3945/ajcn.2008.25825d.
    1. Sievenpiper J. L., de Souza R. J., Mirrahimi A., et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Annals of Internal Medicine. 2012;156(4):291–304. doi: 10.7326/0003-4819-156-4-201202210-00007.
    1. Schwarz J.-M., Linfoot P., Dare D., Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. The American Journal of Clinical Nutrition. 2003;77(1):43–50.
    1. Frayn K. N., Lund P., Walker M. Interpretation of oxygen and carbon dioxide exchange across tissue beds in vivo. Clinical Science. 1993;85(4):373–384.
    1. Blaak E. E., Saris W. H. M. Postprandial thermogenesis and substrate utilization after ingestion of different dietary carbohydrates. Metabolism: Clinical and Experimental. 1996;45(10):1235–1242. doi: 10.1016/s0026-0495(96)90241-3.
    1. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism: Clinical and Experimental. 1988;37(3):287–301.
    1. Tappy L., Mittendorfer B. Fructose toxicity: is the science ready for public health actions? Current Opinion in Clinical Nutrition and Metabolic Care. 2012;15(4):357–361. doi: 10.1097/mco.0b013e328354727e.
    1. Vos M. B., Kimmons J. E., Gillespie C., Welsh J., Blank H. M. Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. The Medscape Journal of Medicine. 2008;10(7, article 160)
    1. Sland M., Haugen M., Eriksen F.-L., et al. High sugar consumption and poor nutrient intake among drug addicts in Oslo, Norway. British Journal of Nutrition. 2011;105(4):618–624. doi: 10.1017/S0007114510003971.

Source: PubMed

3
購読する