Imaging-based clusters in current smokers of the COPD cohort associate with clinical characteristics: the SubPopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)

Babak Haghighi, Sanghun Choi, Jiwoong Choi, Eric A Hoffman, Alejandro P Comellas, John D Newell Jr, R Graham Barr, Eugene Bleecker, Christopher B Cooper, David Couper, Mei Lan Han, Nadia N Hansel, Richard E Kanner, Ella A Kazerooni, Eric A C Kleerup, Fernando J Martinez, Wanda O'Neal, Stephen I Rennard, Prescott G Woodruff, Ching-Long Lin, Babak Haghighi, Sanghun Choi, Jiwoong Choi, Eric A Hoffman, Alejandro P Comellas, John D Newell Jr, R Graham Barr, Eugene Bleecker, Christopher B Cooper, David Couper, Mei Lan Han, Nadia N Hansel, Richard E Kanner, Ella A Kazerooni, Eric A C Kleerup, Fernando J Martinez, Wanda O'Neal, Stephen I Rennard, Prescott G Woodruff, Ching-Long Lin

Abstract

Background: Classification of COPD is usually based on the severity of airflow, which may not sensitively differentiate subpopulations. Using a multiscale imaging-based cluster analysis (MICA), we aim to identify subpopulations for current smokers with COPD.

Methods: Among the SPIROMICS subjects, we analyzed computed tomography images at total lung capacity (TLC) and residual volume (RV) of 284 current smokers. Functional variables were derived from registration of TLC and RV images, e.g. functional small airways disease (fSAD%). Structural variables were assessed at TLC images, e.g. emphysema and airway wall thickness and diameter. We employed an unsupervised method for clustering.

Results: Four clusters were identified. Cluster 1 had relatively normal airway structures; Cluster 2 had an increase of fSAD% and wall thickness; Cluster 3 exhibited a further increase of fSAD% but a decrease of wall thickness and airway diameter; Cluster 4 had a significant increase of fSAD% and emphysema. Clinically, Cluster 1 showed normal FEV1/FVC and low exacerbations. Cluster 4 showed relatively low FEV1/FVC and high exacerbations. While Cluster 2 and Cluster 3 showed similar exacerbations, Cluster 2 had the highest BMI among all clusters.

Conclusions: Association of imaging-based clusters with existing clinical metrics suggests the sensitivity of MICA in differentiating subpopulations.

Keywords: COPD; Current smokers; Emphysema; Functional small airway disease; Imaging-based cluster analysis.

Conflict of interest statement

Ethics approval and consent to participate

Ethics and consent were approved by SPIROMICS committee.

Consent for publication

The paper was approved by SPIROMICS publications and presentation committee.

Competing interests

There is no conflict of interest for all authors including:

Babak Haghighi, Sanghun Choi, Jiwoong Choi, Eric A. Hoffman, Alejandro P. Comellas, John D. Newell Jr., R. Graham Barr, Eugene Bleecker, Christopher B. Cooper, David Couper, MeiLan Han, Nadia N. Hansel, Richard E. Kanner, Ella A. Kazerooni, Eric C Kleerup, Fernando J. Martinez, Wanda O’Neal, Stephen I Rennard, Prescott G Woodruff, Ching-Long Lin. Although E.A. Hoffman is a shareholder in VIDA diagnostics, which is commercializing lung image analysis software derived from the University of Iowa lung imaging group.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
A scree plot for determining the optimal number of principal components
Fig. 2
Fig. 2
a Clustering membership of K-means clustering on 2-D projected coordinates; (b) Clustering membership of Hierarchical clustering on 2-D projected coordinates
Fig. 3
Fig. 3
a Percentage of emphysema (Emph%) for four clusters and the healthy control group (green). † P > 0.05 between clusters 1, 2, 3 and the healthy group. P < 0.05 between Cluster 4 and other groups for all pairwise comparisons (b) Percentage of small airway disease (fSAD%) for four clusters and the healthy control group (green). ‡ P < 0.05 for comparisons between four clusters 2, 3, 4 and the healthy group for all pairwise comparison. P > 0.05 for between Cluster 1 and the healthy group
Fig. 4
Fig. 4
A summary of imaging and clinical variables for four clusters
Fig. 5
Fig. 5
Predicting imaged-based cluster using only 7 important variables with a classification tree (“simple” imaging-based clustering). Variables are Jacobian (Total), Dh* (sLLL), Dh* (sRLL), WT* (sRUL), WT* (sRML), βtissue (LLL) and fSAD% (Total) with 89% accuracy compared with “original” imaging-based clusters using 69 variables
Fig. 6
Fig. 6
PRM based on GOLD stages and imaging-based derived clusters
Fig. 7
Fig. 7
FEV1 and FEV1/FVC based of GOLD stages and imaging-based clusters. Dashed lines represent fixed threshold criteria (FEV1 = 0.8, FEV1/FVC = 0.7) used to distinguish possible PRISm subjects

References

    1. Murphy SL, Kochanek KD, Xu J, Heron M. Deaths: final data for 2012. Natl Vital Stat Rep Cent Dis Control Prev Natl Cent Health Stat Natl Vital Stat Syst. 2015;63:1–117.
    1. Celli BR, MacNee W, Agusti A, Anzueto A, Berg B, Buist AS, Calverley PMA, Chavannes N, Dillard T, Fahy B, Fein A, Heffner J, Lareau S, Meek P, Martinez F, McNicholas W, Muris J, Austegard E, Pauwels R, Rennard S, Rossi A, Siafakas N, Tiep B, Vestbo J, Wouters E, ZuWallack R. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–946. doi: 10.1183/09031936.04.00014304.
    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–555. doi: 10.1164/rccm.200703-456SO.
    1. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, Macnee W, Make BJ, Rabe KF, Rennard SI, Sciurba FC, Silverman EK, Vestbo J, Washko GR, Wouters EFM, Martinez FJ. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182:598–604. doi: 10.1164/rccm.200912-1843CC.
    1. Burrows B, Fletcher CM, Heard BE, Jones NL, Wootliff JS. The emphysematous and bronchial types of chronic airways obstruction: a Clinicopathological study of patients in London and Chicago. Lancet. 1966;287:830–835. doi: 10.1016/S0140-6736(66)90181-4.
    1. Choi S, Hoffman EA, Wenzel SE, Castro M, Fain SB, Jarjour NN, Schiebler ML, Chen K, Lin C-L. Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol. 2015;118:1286–1298. doi: 10.1152/japplphysiol.01094.2014.
    1. Choi Sanghun, Hoffman Eric A., Wenzel Sally E., Castro Mario, Fain Sean, Jarjour Nizar, Schiebler Mark L., Chen Kun, Lin Ching-Long. Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. Journal of Allergy and Clinical Immunology. 2017;140(3):690-700.e8.
    1. Hoffman EA, Lynch DA, Barr RG, van Beek EJR, Parraga G, IWPFI Investigators Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J Magn Reson Imaging JMRI. 2016;43:544–557. doi: 10.1002/jmri.25010.
    1. Cho MH, Washko GR, Hoffmann TJ, Criner GJ, Hoffman EA, Martinez FJ, Laird N, Reilly JJ, Silverman EK. Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation. Respir Res. 2010;11:30. doi: 10.1186/1465-9921-11-30.
    1. Garcia-Aymerich J, Gómez FP, Benet M, Farrero E, Basagaña X, Gayete À, Paré C, Freixa X, Ferrer J, Ferrer A, Roca J, Gáldiz JB, Sauleda J, Monsó E, Gea J, Barberà JA, Agustí À, Antó JM, PAC-COPD Study Group Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax. 2011;66:430–437. doi: 10.1136/thx.2010.154484.
    1. Paoletti M, Camiciottoli G, Meoni E, Bigazzi F, Cestelli L, Pistolesi M, Marchesi C. Explorative data analysis techniques and unsupervised clustering methods to support clinical assessment of chronic obstructive pulmonary disease (COPD) phenotypes. J Biomed Inform. 2009;42:1013–1021. doi: 10.1016/j.jbi.2009.05.008.
    1. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D’Agostino R, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, SAA C, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER, National Heart, Lung, and Blood Institute’s Severe Asthma Research Program Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med. 2010;181:315–323. doi: 10.1164/rccm.200906-0896OC.
    1. Burgel P-R, Roche N, Paillasseur J-L, Tillie-Leblond I, Chanez P, Escamilla R, Court-Fortune I, Perez T, Carré P, Caillaud D, INITIATIVES BPCO Scientific Committee Clinical COPD phenotypes identified by cluster analysis: validation with mortality. Eur Respir J. 2012;40:495–496. doi: 10.1183/09031936.00228511.
    1. Castaldi PJ, Dy J, Ross J, Chang Y, Washko GR, Curran-Everett D, Williams A, Lynch DA, Make BJ, Crapo JD, Bowler RP, Regan EA, Hokanson JE, Kinney GL, Han MK, Soler X, Ramsdell JW, Barr RG, Foreman M, van Beek E, Casaburi R, Criner GJ, Lutz SM, Rennard SI, Santorico S, Sciurba FC, DeMeo DL, Hersh CP, Silverman EK, et al. Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. Thorax. 2014;69:415–422. doi: 10.1136/thoraxjnl-2013-203601.
    1. Burgel P-R, Paillasseur J-L, Caillaud D, Tillie-Leblond I, Chanez P, Escamilla R, Court-Fortune I, Perez T, Carré P, Roche N. Initiatives BPCO scientific committee. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur Respir J. 2010;36:531–539. doi: 10.1183/09031936.00175109.
    1. Gagnon P, Casaburi R, Saey D, Porszasz J, Provencher S, Milot J, Bourbeau J, O’Donnell DE, Maltais F. Cluster analysis in patients with GOLD 1 chronic obstructive pulmonary disease. PLoS One. 2015;10:e0123626. doi: 10.1371/journal.pone.0123626.
    1. Castaldi Peter J, Benet Marta, Petersen Hans, Rafaels Nicholas, Finigan James, Paoletti Matteo, Marike Boezen H, Vonk Judith M, Bowler Russell, Pistolesi Massimo, Puhan Milo A, Anto Josep, Wauters Els, Lambrechts Diether, Janssens Wim, Bigazzi Francesca, Camiciottoli Gianna, Cho Michael H, Hersh Craig P, Barnes Kathleen, Rennard Stephen, Boorgula Meher Preethi, Dy Jennifer, Hansel Nadia N, Crapo James D, Tesfaigzi Yohannes, Agusti Alvar, Silverman Edwin K, Garcia-Aymerich Judith. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax. 2017;72(11):998–1006. doi: 10.1136/thoraxjnl-2016-209846.
    1. Choi S, Hoffman EA, Wenzel SE, Castro M, Lin C-L. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. J Appl Physiol. 2014;117:593–603. doi: 10.1152/japplphysiol.00280.2014.
    1. Couper David, LaVange Lisa M, Han MeiLan, Barr R Graham, Bleecker Eugene, Hoffman Eric A, Kanner Richard, Kleerup Eric, Martinez Fernando J, Woodruff Prescott G, Rennard Stephen. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS): Table 1. Thorax. 2013;69(5):492–495. doi: 10.1136/thoraxjnl-2013-203897.
    1. Multiscale Imaging-Based Clusters in the COPD Cohort Associates with Clinical Characteristics: The SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS) - ajrccm-conference. 2016. 193.1_MeetingAbstracts. A6612. at .
    1. Hennig C. Cluster-wise assessment of cluster stability. Comput Stat Data Anal. 2007;52:258–271. doi: 10.1016/j.csda.2006.11.025.
    1. Shaker Saher B., Stavngaard Trine, Laursen Lars Christian, Stoel Berend C., Dirksen Asger. Rapid Fall in Lung Density Following Smoking Cessation in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2011;8(1):2–7. doi: 10.3109/15412555.2010.541306.
    1. Sieren JP, Newell JD, Barr RG, Bleecker ER, Burnette N, Carretta EE, Couper D, Goldin J, Guo J, Han MK, Hansel NN, Kanner RE, Kazerooni EA, Martinez FJ, Rennard S, Woodruff PG, Hoffman EA, SPIROMICS Research Group SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med. 2016;194:794–806. doi: 10.1164/rccm.201506-1208PP.
    1. Yin Y, Hoffman EA, Lin C-L. Mass preserving nonrigid registration of CT lung images using cubic B-spline. Med Phys. 2009;36:4213–4222. doi: 10.1118/1.3193526.
    1. Haghighi Babak, D. Ellingwood Nathan, Yin Youbing, Hoffman Eric A., Lin Ching-Long. A GPU-based symmetric non-rigid image registration method in human lung. Medical & Biological Engineering & Computing. 2017;56(3):355–371. doi: 10.1007/s11517-017-1690-2.
    1. Amelon R, Cao K, Ding K, Christensen GE, Reinhardt JM, Raghavan ML. Three-dimensional characterization of regional lung deformation. J Biomech. 2011;44:2489–2495. doi: 10.1016/j.jbiomech.2011.06.009.
    1. Jahani N, Yin Y, Hoffman EA, Lin C-L. Assessment of regional non-linear tissue deformation and air volume change of human lungs via image registration. J Biomech. 2014;47:1626–1633. doi: 10.1016/j.jbiomech.2014.02.040.
    1. Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, Rehemtulla A, Kazerooni EA, Martinez FJ, Ross BD. Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18:1711. doi: 10.1038/nm.2971.
    1. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv CSUR. 1999;31:264–323. doi: 10.1145/331499.331504.
    1. Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc. 2002;97:611–631. doi: 10.1198/016214502760047131.
    1. clValid: An R Package for Cluster Validation | Brock | Journal of Statistical Software. 2008. .
    1. NbClust function | R Documentation. 2015. .
    1. Hayton JC, Allen DG, Scarpello V. Factor retention decisions in exploratory factor analysis: a tutorial on parallel analysis. Organ Res Methods. 2004;7:191–205. doi: 10.1177/1094428104263675.
    1. Data Analysis and Decision Support | Daniel Baier | Springer 2005. .
    1. Woodruff PG, Barr RG, Bleecker E, Christenson SA, Couper D, Curtis JL, Gouskova NA, Hansel NN, Hoffman EA, Kanner RE, Kleerup E, Lazarus SC, Martinez FJ, Paine RI, Rennard S, Tashkin DP, Han MK. Clinical significance of symptoms in smokers with preserved pulmonary function. N Engl J Med. 2016;374:1811–1821. doi: 10.1056/NEJMoa1505971.
    1. Smith B, Hoffman E, Donohue K, Rabinowitz D, Barr RG. Airway wall thinness and COPD: analysis of spatially comparable airways. The MESA COPD study. Eur Respir J. 2013;42:210. doi: 10.1183/09031936.00124012.
    1. Wan ES, Castaldi PJ, Cho MH, Hokanson JE, Regan EA, Make BJ, Beaty TH, Han MK, Curtis JL, Curran-Everett D, Lynch DA, DeMeo DL, Crapo JD, Silverman EK. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respir Res. 2014;15:89. doi: 10.1186/s12931-014-0089-y.
    1. Sood A. Obesity, Adipokines, and lung disease. J Appl Physiol Bethesda Md 1985. 2010;108:744–753.

Source: PubMed

3
購読する